Abstract:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may transmit signaling to indicate D2D discovery zone configuration to proximity service (ProSe) enabled UEs. The signaling may indicate time and frequency resources and a periodicity of a discovery zone and may indicate operational parameters for the discovery zone. The resources of the D2D discovery zone may be allocated for D2D discovery signal transmission by the ProSe-enabled UEs.
Abstract:
Examples may include techniques to enable user equipment (UE) to establish a device-to-device (D2D) communication link for D2D communications with another UE. In some examples, the D2D communications may occur when either both or at least one UE is within a coverage area for a wireless wide area network (WWAN). In some other examples, both UEs may be outside of the coverage area and may utilize a third UE to provide or relay information for use to establish the D2D communication link.
Abstract:
Technology for conditional hybrid automatic retransmission re-quest (HARQ) mapping for carrier aggregation (CA) is disclosed. One method can include a user equipment (UE) determining when a subframe for physical downlink shared channel (PDSCH) transmission is configured for downlink semi-persistent scheduling (SPS). The subframe configured for downlink SPS can generate a first condition. The UE can generate HARQ-ACK states for the first condition for a HARQ bundling window with discontinuous transmission (DTX) padding for a secondary HARQ bundling window size for a secondary cell (SCell) and a primary HARQ bundling window size for a primary cell (PCell). The UE can generate HARQ-ACK states for a second condition for the HARQ bundling window with DTX padding including a DTX padding exception. The second condition can include conditions not covered by the first condition. The DTC padding exception can generate a set of HARQ-ACK states to uniquely define each padded HARQ-ACK state.
Abstract:
Technology to support mapping for Hybrid Automatic Retransmission re-Quest (HARQ) for Carrier Aggregation (CA) is disclosed. One method can include a user equipment (UE) identifying, within a radio frame, a type 2 DownLink (DL) sub-frame within a virtual bundling window associated with a Secondary Component Carrier (SCC). The type 2 DL sub-frame can be virtually moved from a Primary Component Carrier (PCC) for HARQ-ACKnowledge (HARQ-ACK) multiplexing of the virtual bundling window. The UE can extract a Component Carrier Element (CCE) number for a first CCE used by a Physical Downlink Control CHannel (PDCCH) transmission corresponding to the type 2 DL sub-frame. The UE can determine a Physical Uplink Control CHannel (PUCCH) resource for carrying a HARQ-ACK multiplexing message based on the CCE number when a PCC window size of the PCC is greater than an SCC window size of the SCC.
Abstract:
Briefly, in accordance with one or more embodiments, a codebook for wireless transmissions may be generated by dividing a codebook into a fixed set of codewords and an adaptive set of codewords. The adaptive set of codewords may be scaled to cluster together and then rotated to be centered or nearly centered about a target. The adaptive set of codewords may then be merged with the fixed set of codewords to provide a hybrid codebook. A codeword from the hybrid codebook may be selected for precoding a transmission to provide a minimum, or nearly minimum, quantization error.
Abstract:
Embodiments of a User Equipment (UE), Generation Node-B (gNB) and methods of communication are disclosed herein. The UE may receive a physical downlink control channel (PDCCH) that schedules a physical downlink shared channel (PDSCH) in a slot, and on a component carrier (CC) of a plurality of CCs. The PDCCH may include a total downlink assignment index (DAI) and a counter DAI for hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback of the PDSCH. The total DAI may indicate a total number of pairs of CCs and slots for the HARQ-ACK feedback. The UE may encode the HARQ-ACK feedback to include a bit that indicates whether the PDSCH is successfully decoded. A size of the HARQ-ACK feedback may be based on the total DAI, and a position of the bit may be based on the counter DAI.
Abstract:
Embodiments of a User Equipment (UE), Generation Node-B (gNB) and methods of communication are disclosed herein. The UE may attempt to decode sidelink synchronization signals (SLSSs) received on component carriers (CCs) of a carrier aggregation. In one configuration, synchronization resources for SLSS transmissions may be aligned across the CCs at subframe boundaries in time, restricted to a portion of the CCs, and restricted to a same sub-frame. The UE may, for multiple CCs, determine a priority level for the CC based on indicators in the SLSSs received on the CC. The UE may select, from the CCs on which one or more SLSSs are decoded, the CC for which the determined priority level is highest. The UE may determine a reference timing for sidelink communication based on the one or more SLSSs received on the selected CC.
Abstract:
Provided herein are method and apparatus for channel coding in the fifth Generation (5G) New Radio (NR) system. An embodiment provides an apparatus for a Next Generation NodeB (gNB), including circuitry, which is configured to: generate Downlink Control Information (DCI) payload for a NR-Physical Downlink Control Channel (NR-PDCCH); attach Cyclic Redundancy Check (CRC) to the DCI payload; mask the CRC with an Radio Network Temporary Identifier (RNTI) using a bitwise modulus 2 addition operation, wherein the number of bits for the RNTI is different from the number of bits for the CRC; and perform polar encoding for the DCI payload with the masked CRC.
Abstract:
Embodiments of a User Equipment (UE), Generation Node-B (gNB) and methods of communication are disclosed herein. The UE may receive a physical downlink control channel (PDCCH) that schedules a physical downlink shared channel (PDSCH) in a slot, and on a component carrier (CC) of a plurality of CCs. The PDCCH may include a total downlink assignment index (DAI) and a counter DAI for hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback of the PDSCH. The total DAI may indicate a total number of pairs of CCs and slots for the HARQ-ACK feedback. The UE may encode the HARQ-ACK feedback to include a bit that indicates whether the PDSCH is successfully decoded. A size of the HARQ-ACK feedback may be based on the total DAI, and a position of the bit may be based on the counter DAI.
Abstract:
Technology for a user equipment (UE) to communicate in a device to device (D2D) network is described. A temporary identification (Temp ID) can be received from an enhanced node B (eNB). A D2D discovery resource allocation can be received within a physical uplink channel from the eNB. A UE D2D discovery resource can be selected from the D2D discovery resource allocation based on the Temp ID. A D2D discovery beacon can be transmitted from the UE D2D discovery resource to enable other UEs to detect the UE.