Abstract:
Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The methods further include modifying the removal selectivity of the surface material relative to material protected by the localized masking. Modification of the removal selectivity eases or quickens removal of the surface material. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract:
Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract:
The present invention provides an etching composition which includes a polyhydric alcohol in combination with two inorganic acids. Preferably the etching composition of the present invention is a mixture of a glycol, nitric acid and hydrofluoric acid, with propylene glycol being preferred. The etching composition of the present invention achieves a selectivity of greater than 70:1, doped material to undoped material. The present invention provides an etching formulation which has increased selectivity of doped polysilicon to undoped polysilicon and provides an efficient integrated circuit fabrication process without requiring time consuming and costly processing modifications to the etching apparatus or production apparatus.
Abstract:
Some embodiments include methods of treating semiconductor substrates. The substrates may be exposed to one or more conditions that vary continuously. The conditions may include temperature gradients, concentration gradients of one or more compositions that quench etchant, pH gradients to assist in removing particles, and/or concentration gradients of one or more compositions that assist in removing particles. The continuously varying conditions may be imparted by placing the semiconductor substrates in a bath of flowing rinsing solution, with the bath having at least two feed lines that provide the rinsing solution therein. One of the feed lines may be at a first condition, and the other may be at a second condition that is different from the first condition. The relative amount of rinsing solution provided to the bath by each feed line may be varied to continuously vary the condition within the bath.
Abstract:
Methods for forming the lower electrode of a capacitor in a semiconductor circuit, and the capacitors formed by such methods are provided. The lower electrode is fabricated by forming a texturizing underlayer and then depositing a conductive material thereover. In one embodiment of a method of forming the lower electrode, the texturizing layer is formed by depositing a polymeric material comprising a hydrocarbon block and a silicon-containing block, over the insulative layer of a container, and then subsequently converting the polymeric film to relief or porous nanostructures by exposure to UV radiation and ozone, resulting in a textured porous or relief silicon oxycarbide film. A conductive material is then deposited over the texturizing layer resulting in a lower electrode have an upper roughened surface. In another embodiment of a method of forming the lower electrode, the texturizing underlayer is formed by depositing overlying first and second conductive metal layers and annealing the metal layers to form surface dislocations, preferably structured as a periodic network. A conductive metal is then deposited in gaseous phase, and agglomerates onto the surface dislocations of the texturizing layer, forming nanostructures in the form of island clusters. The capacitor is completed by depositing a dielectric layer over the formed lower electrode, and forming an upper capacitor electrode over the dielectric layer. The capacitors are particularly useful in fabricating DRAM cells.
Abstract:
A method for forming an MRAM bit is described that includes providing a covering layer over an integrated circuit structure. In one embodiment, the covering layer includes tantalum. A first mask layer is formed over the covering layer followed by a second mask layer. The first mask layer and second mask layer are etchable by the same etching process. The first and second mask layer are etched. Etch residue is removed from the first and second mask layers. The first mask layer is then selectively removed and the second mask layer remains.
Abstract:
The present invention relates to a method of cleaning and drying a semiconductor structure in a modified conventional gas etch/rinse or dryer vessel.
Abstract:
A composition for use in semiconductor processing wherein the composition comprises water, phosphoric acid, and an organic acid; wherein the organic acid is ascorbic acid or is an organic acid having two or more carboxylic acid groups (e.g., citric acid). The water can be present in about 40 wt. % to about 85 wt. % of the composition, the phosphoric acid can be present in about 0.01 wt. % to about 10 wt. % of the composition, and the organic acid can be present in about 10 wt. % to about 60 wt. % of the composition. The composition can be used for cleaning various surfaces, such as, for example, patterned metal layers and vias by exposing the surfaces to the composition.
Abstract:
Organic acid components are used to increase the solubility of ozone in aqueous solutions for use in removing organic materials, such as polymeric resist and/or post-etch residues, from the surface of an integrated circuit device during fabrication. Each organic acid component is preferably chosen for its metal-passivating effect. Such solutions can have significantly lower corrosion rates when compared to ozonated aqueous solutions using common inorganic acids for ozone solubility enhancement due to the passivating effect of the organic acid component.
Abstract:
The present invention provides an etching composition which includes a polyhydric alcohol in combination with two inorganic acids. Preferably the etching composition of the present invention is a mixture of a glycol, nitric acid and hydrofluoric acid, with propylene glycol being preferred. The etching composition of the present invention achieves a selectivity of greater than 70:1, doped material to undoped material. The present invention provides an etching formulation which has increased selectivity of doped polysilicon to undoped polysilicon and provides an efficient integrated circuit fabrication process without requiring time consuming and costly processing modifications to the etching apparatus or production apparatus.