Abstract:
A charged particle detector assembly comprises a particle detector, which has at least one particle sensitive region for detecting at least a portion of the spatial distribution of charged particles and for generating a two-dimensional optical signal which correlates to the detected spatial distribution. Further, an image conduit has an input coupled to the particle sensitive region of the particle detector for transmitting the two-dimensional optical signal to at least one optical detector. Further, a selecting means is adapted for selecting at least a portion of the two-dimensional optical signal.
Abstract:
Methods and apparatus are disclosed for forming a sample of an object, extracting the sample from the object, and subjecting this sample to microanalysis including surface analysis and electron transparency analysis in a vacuum chamber. In some embodiments, a method is provided for imaging an object cross section surface of an extracted sample. Optionally, the sample is iteratively thinned and imaged within the vacuum chamber. In some embodiments, the sample is situated on a sample support including an optional aperture. Optionally, the sample is situated on a surface of the sample support such that the object cross section surface is substantially parallel to the surface of the sample support. Once mounted on the sample support, the sample is either subjected to microanalysis in the vacuum chamber, or loaded onto a loading station. In some embodiments, the sample is imaged with an electron beam substantially normally incident to the object cross section surface.
Abstract:
Systems and methods for process monitoring based upon X-ray emission induced by a beam of charged particles such as electrons or ions include a system and method for process monitoring that analyze a cavity before being filled and then analyze emitted X-rays from the cavity after the cavity has been filled with a conductive material. Also included are system and methods for process monitoring that apply a quantitative analysis correction technique on detected X-ray emissions.
Abstract:
Methods and apparatus are disclosed for forming a sample of an object, extracting the sample from the object, and subjecting this sample to microanalysis including surface analysis and electron transparency analysis in a vacuum chamber. In some embodiments, a method is provided for imaging an object cross section surface of an extracted sample. Optionally, the sample is iteratively thinned and imaged within the vacuum chamber. In some embodiments, the sample is situated on a sample support including an optional aperture. Optionally, the sample is situated on a surface of the sample support such that the object cross section surface is substantially parallel to the surface of the sample support. Once mounted on the sample support, the sample is either subjected to microanalysis in the vacuum chamber, or loaded onto a loading station. In some embodiments, the sample is imaged with an electron beam substantially normally incident to the object cross section surface.
Abstract:
Methods and apparatus are disclosed for forming a sample of an object, extracting the sample from the object, and subjecting this sample to microanalysis including surface analysis and electron transparency analysis in a vacuum chamber. In some embodiments, a method is provided for imaging an object cross section surface of an extracted sample. Optionally, the sample is iteratively thinned and imaged within the vacuum chamber. In some embodiments, the sample is situated on a sample support including an optional aperture. Optionally, the sample is situated on a surface of the sample support such that the object cross section surface is substantially parallel to the surface of the sample support. Once mounted on the sample support, the sample is either subjected to microanalysis in the vacuum chamber, or loaded onto a loading station. In some embodiments, the sample is imaged with an electron beam substantially normally incident to the object cross section surface.
Abstract:
A method for improving the resolution of a scanning electron microscope, the method including: defining an energy band in response to an expected penetration depth of secondary electrons in an object; illuminating the object with a primary electron beam; and generating images from electrons that arrive at a spectrometer having an energy within the energy band. A scanning electron microscope that includes: a stage for supporting an object; a controller, adapted to receive or define an energy band an energy band in response to an expected penetration depth of secondary electrons in an object; illumination optics adapted to illuminate the object with a primary electron beam; a spectrometer; controlled by the controller so as to selectively reject electrons in response to the defined energy band; and a processor that is adapted to generate images from detection signals provided by the spectrometer.
Abstract:
Systems and methods for process monitoring based upon X-ray emission induced by a beam of charged particles such as electrons or ions. Concept as expressed herein.
Abstract:
A inspection system includes: a lens arrangement adapted to generate a substantially symmetrical electrostatic field about an optical axis and to direct a primary electron beam towards an object that is oriented in relation to the optical axis at a non-normal angle; and at least on additional electrode, positioned outside the lens arrangement such as to increase symmetry of an electromagnetic field in the vicinity of an interaction point between the primary electron beam and the object. A method for inspecting an object includes: passing a primary electron beam, along an optical axis, through a substantially symmetrical electrostatic field defined within an electron lens arrangement; and propagating the primary electron beam from the lens arrangement towards an interaction point with an object that is oriented in relation to the optical axis at a non-normal angle, while maintaining, by at least one additional electrode positioned outside the lens arrangement, a substantially symmetrical electrical field in a vicinity of the interaction point.
Abstract:
An apparatus and a method for electrically testing a semiconductor wafer, the method including: (i) depositing electrical charges at certain points of a test pattern; (ii) scanning at least a portion of the test pattern such as to enhance charge differences resulting from defects; and (iii) collecting charged particles emitted from the at least scanned portion as a result of the scanning, thus providing an indication about an electrical state of the respective test structure.
Abstract:
A system and method for directing the object, such as a semiconductor die. The system includes a first images such as a scanning electron microscope, a stage for moving the object and a second imager and miller such as a focused ion beam generator. The object is images to locate a desired location in which the object is to be milled and a landmark that is utilized for directing the miller. The system can include additional steps of milling, analyzing and movement of the object.