Abstract:
Provided are a single crystal cooler and a single crystal grower including the same. The single crystal cooler includes a cooling main body and a passage. The passage is formed on an inner wall and an outer wall of the cooling main body. The passage allows cooling materials to move therethrough. The single crystal cooler has a cylindrical shape. A first inner diameter R1 of the single crystal cooler is about 1.5 times or more greater than an inner diameter R2 of a single crystal grown by applying the single crystal cooler.
Abstract:
A display substrate comprises a base substrate divided into a display region and a peripheral region surrounding the display region, wherein an image is displayed in the display region, a pixel part formed in the display region of the base substrate, a first color filter layer formed on the base substrate including the pixel part, wherein the first color filter layer is formed in the display region, and a second color filter layer formed in the peripheral region of the base substrate.
Abstract:
In an array substrate and a display apparatus, a gate line receives a gate pulse during a present 1H period and a data line receives a pixel voltage having a polarity inverted at every frame. When a thin film transistor is turned on in response to the gate pulse during the present 1H period, a pixel electrode receives the pixel voltage through the thin film transistor during the present 1H period. A pre-charging part pre-charges the pixel electrode to a common voltage that is a reference voltage of the pixel voltage in response to a previous gate pulse during a previous 1H period.
Abstract:
A silicon single crystal ingot growing apparatus for growing a silicon single crystal ingot based on a Czochralski method The silicon single crystal ingot growing apparatus includes a chamber; a crucible provided in the chamber, and for containing a silicon melt; a heater provided at the outside of the crucible and for heating the silicon melt; a pulling unit for ascending a silicon single crystal grown from the silicon melt; and a plurality of magnetic members provided at the outside of the chamber and for asymmetrically applying a magnetic field to the silicon melt Such a structure can uniformly controls an oxygen concentration at a rear portion of a silicon single crystal ingot using asymmetric upper/lower magnetic fields without replacing a hot zone In addition, such a structure can controls a flower phenomenon generated on the growth of the single crystal by the asymmetric magnetic fields without a loss such as the additional hot zone (H/Z) replacement, P/S down, and SR variance.
Abstract:
A thin film transistor substrate, wherein the moving area of electrons between source and drain electrodes of a thin film transistor (TFT) is minimized, the moving distance of electrons is increased, and the sizes of capacitors defined by a gate electrode together with the respective source and drain electrodes are identical to each other so that an off current generated when the TFT is off can be minimized; a method of manufacturing the thin film transistor substrate; and a mask for manufacturing the thin film transistor substrate. Accordingly, it is possible to minimize an off current induced due to a phenomenon of electron trapping by light.
Abstract:
Disclosed is a liquid crystal display device including a first substrate, a second substrate, and a liquid crystal layer interposed there between. The first substrate is provided with gate lines and data lines thereon. The gate lines and data lines cross with each other and are insulated from each other. Pixel electrodes are stacked on the gate lines and data lines. Each pixel electrode includes first and second sub-pixel electrodes spaced apart from each other and a connection electrode, which connects the first sub-pixel electrode to the second sub-pixel electrode. The second substrate is provided with a common electrode thereon. The common electrode includes a first domain divider formed on the center of the first sub-pixel electrode and a second domain divider formed on the center of the second sub-pixel electrode.
Abstract:
The present invention relates to a method for manufacturing an ultra low defect semiconductor single crystalline ingot, which uses a Czochralski process for growing a semiconductor single crystalline ingot through a solid-liquid interface by dipping a seed into a semiconductor melt received in a quartz crucible and slowly pulling up the seed while rotating the seed, wherein a defect-free margin is controlled by increasing or decreasing a heat space on a surface of the semiconductor melt according to change in length of the single crystalline ingot as progress of the single crystalline ingot growth process.
Abstract:
A gate driving circuit has a first stage which includes: a pull-up driving unit which receives a first carry signal from a second stage and outputs a control signal having first, second, third and fourth voltages to a first node during a preliminary period, a gate active period, a first gate inactive period and a second gate inactive period, respectively; a pull-up unit which receives the control signal and outputs a gate-on signal to a second node during the gate active period; a carry output unit which receives the control signal and outputs a second carry signal to a third stage during the gate active period; and a pull-down unit which receives a gate-off signal and the second carry signal from the second stage and outputs the control signal having the fourth voltage level to the first node during the second gate inactive period.
Abstract:
A liquid crystal display (“LCD”) capable of preventing or substantially reducing migration of impurities in a liquid crystal layer, thereby preventing or substantially reducing an occurrence of line afterimages that may be caused by the impurities, includes gate lines and data lines intersecting on an insulating substrate, pixels arranged in a matrix shape, color organic films formed on the insulating substrate and corresponding to the pixels, and indentations or other formations formed between adjacent color organic films.
Abstract:
A method for growing a silicon single crystal ingot by a Czochralski method, which is capable of providing silicon wafers having very uniform in-plane quality and which results in improvement of semiconductor device yield. A method is provided for producing a silicon single crystal ingot by a Czochralski method, wherein when convection of a silicon melt is divided into a core cell and an outer cell, the silicon single crystal ingot is grown under the condition that the maximal horizontal direction width of the core cell is 30 to 60% of a surface radius of the silicon melt. In one embodiment the silicon single crystal ingot is grown under the condition that the maximal vertical direction depth of the core cell is equal to or more than 50% of the maximal depth of the silicon melt.