Abstract:
An electrostatic discharge (ESD) protection circuit includes at least one bipolar transistor. At least one isolation structure is disposed in a substrate. The at least one isolation structure is configured to electrically isolate two terminals of the at least one bipolar transistor. At least one diode is electrically coupled with the at least one bipolar transistor, wherein a junction interface of the at least one diode is disposed adjacent the at least one isolation structure.
Abstract:
A high voltage (HV) device includes a well region of a first dopant type disposed in a substrate. A first well region of a second dopant type is disposed in the well region of the first dopant type. An isolation structure is at least partially disposed in the well region of the first dopant type. A first gate electrode is disposed over the isolation structure and the first well region of the second dopant type. A second well region of the second dopant type is disposed in the well region of the first dopant type. The second well region of the second dopant type is spaced from the first well region of the second dopant type. A second gate electrode is disposed between and over the first well region of the second dopant type and the second well region of the second dopant type.
Abstract:
A method for forming a support structure for supporting and handling a semiconductor wafer containing vertical FETs formed at the front surface thereof is provided. In one embodiment, a semiconductor wafer is provided having a front surface and a rear surface, wherein the front surface comprises one or more dies separated by dicing lines. The wafer is thinned to a predetermined thickness. A plurality of patterned metal features are formed on a thinned rear surface to provide support for the wafer, wherein each of the plurality of patterned metal features covers substantially one die, leaving the dicing lines substantially uncovered. The wafer is thereafter diced along the dicing lines to separate the one or more dies for later chip packaging.
Abstract:
The present invention provides an anti-reflection films for lithographic application on polysilicon containing substrate. A structure for improving lithography patterning in an integrated circuit comprises a polysilicon layer, a diaphanous layer located above the polysilicon layer, an anti-reflection layer located above the diaphanous layer, and then a photoresist layer located above the anti-reflection layer for patterning the integrated circuit pattern. The anti-reflection layer is preferably oxynitride.
Abstract:
A method for making a DRAM MOSFET integrated circuit and resulting device having low leakage and long retention time in a semiconductor wafer is described. A pattern of gate dielectric and gate electrode structures is provided over the semiconductor wafer having a first conductivity imparting dopant in the cell array region and the peripheral circuits region of the integrated circuit. The pattern of gate dielectric and gate electrode structures as a mask for ion implantation to form lightly doped regions of a second and opposite conductivity imparting dopant in the semiconductor wafer wherein certain of the lightly doped regions within the cell array region are to be bit line regions and capacitor node regions. A capacitor is formed within the cell array region. An interlevel dielectric insulating layer is formed over the surface of the structure. A highly doped bit line contact is formed to the bit line regions. The structure is heated to anneal out the ion implantation damage in the lightly doped regions caused by the ion implantation into the lightly doped regions and to cause outdiffusion from the doped bit line contact layer to form a highly doped bit line contact within certain of the lightly doped regions wherein the low leakage and long retention time are the resulting circuit characteristics.
Abstract:
A method of forming a silicon oxide isolation region on the surface of a silicon wafer consisting of a thin layer of silicon oxide on the wafer, a layer of impurity-doped polysilicon, and a layer of silicon nitride. The oxidation mask is formed by patterning the silicon nitride layer and at least a portion of the doped polysilicon layer. The silicon oxide field isolation region is formed by subjecting the structure to a thermal oxidation ambient. The oxidation mask is removed in one continuous etching step using a single etchant, such as phosphoric acid which etches the silicon nitride and polysilicon layers at substantially the same rate to complete the formation of the isolation region without pitting the monocrystalline substrate.
Abstract:
A method for fabricating semiconductor devices having field oxide isolation with channel stop is described which overcomes the encroachment problems of the prior art. A semiconductor substrate is provided. A multilayer oxidation masking structure of a silicon oxide layer, a polycrystalline silicon layer and a silicon nitride layer is formed. The multilayer oxidation mask is patterned by removing the silicon nitride layer and a portion of the polycrystalline silicon layer in the areas designated to have field oxide isolation grown therein. A sidewall insulator structure is formed on the exposed sidewalls of the patterned oxidation mask. Impurities are implanted into the area designated to have field oxide isolation to form the channel stop. The sidewall insulator structure is removed. The field oxide insulator structure is grown by subjecting the structure to oxidation whereby the channel stop is confined under the field oxide isolation and not encroaching the planned device regions.
Abstract:
A silicon substrate with a GaN-based device and a Si-based device on the silicon substrate is provided. The silicon substrate includes the GaN-based device on a SiC crystalline region. The SiC crystalline region is formed in the silicon substrate. The silicon substrate also includes the Si-based device on a silicon region, and the silicon region is next to the SiC crystalline region on the silicon substrate.
Abstract:
A semiconductor structure includes a substrate, a first power device and a second power device in the substrate, at least one isolation feature between the first and second power device, and a trapping feature adjoining the at least one isolation feature in the substrate.
Abstract:
The process methods and structures mentioned above for creating a trench MOSFET enables self-aligned contacts to be formed to allow decreasing pitch size for trench MOSFET. The self-aligned contacts are formed by etching exposed silicon areas without using lithographical mask and alignment. As a result, the allowance for alignment can be saved and the pitch size can be decreased.