Abstract:
A hexagonal mold is formed by a unitary base and a unitary cover. Each of the base and the cover form three of the six surfaces of a hexagonal mold cavity when the cover is placed on top of the base. The hexagonal mold may be used to form field emission display spacers and field emission display microchannels by placing etchable single fibers in the hexagonal mold to form hexagonal multiple fiber preforms. The preforms are then drawn to form multiple fibers that are placed in a rectangular mold to form a rectangular fiber block. The rectangular fiber block is then sliced into sheets which are then placed between a field emission display baseplate and a field emission display faceplate.
Abstract:
Methods for forming the lower electrode of a capacitor in a semiconductor circuit, and the capacitors formed by such methods are provided. The lower electrode is fabricated by forming a texturizing underlayer and then depositing a conductive material thereover. In one embodiment of a method of forming the lower electrode, the texturizing layer is formed by depositing a polymeric material comprising a hydrocarbon block and a silicon-containing block, over the insulative layer of a container, and then subsequently converting the polymeric film to relief or porous nanostructures by exposure to UV radiation and ozone, resulting in a textured porous or relief silicon oxycarbide film. A conductive material is then deposited over the texturizing layer resulting in a lower electrode have an upper roughened surface. In another embodiment of a method of forming the lower electrode, the texturizing underlayer is formed by depositing overlying first and second conductive metal layers and annealing the metal layers to form surface dislocations, preferably structured as a periodic network. A conductive metal is then deposited in gaseous phase, and agglomerates onto the surface dislocations of the texturizing layer, forming nanostructures in the form of island clusters. The capacitor is completed by depositing a dielectric layer over the formed lower electrode, and forming an upper capacitor electrode over the dielectric layer. The capacitors are particularly useful in fabricating DRAM cells.
Abstract:
An apparatus and a method for stabilizing the threshold voltage in an active matrix field emission device are disclosed. The method includes the formation of radiation-blocking elements between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
An apparatus for stabilizing the threshold voltage in an active matrix field emission device is disclosed. The apparatus includes the formation of radiation-blocking elements between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
In one aspect, the invention encompasses a method of forming a semiconductor device. A masking material is formed over a semiconductor substrate. A mold is provided, and the mold has a first pattern defined by projections and valleys between the projection. The masking material is pressed between the mold and the substrate to form a second pattern in the masking material. The second pattern is substantially complementary to the first pattern. The mold is removed from the masking material, and subsequently the masking material is utilized as a mask during etching of the semiconductor substrate. In another aspect, the invention encompasses a method of forming a field emission display. A first material layer is formed over a conductive substrate, and a masking material is formed over the first material layer. A mold is provided over the mask material, and the mask material is pressed between the mold and the first material layer to pattern the masking material. The pattern is transferred from the masking material to the first material layer. The patterned first material layer is then used as a second mask, and the conductive substrate is etched to form a plurality of conically shaped emitters. A display screen is formed in a spaced relation to such emitters.
Abstract:
A hexagonal mold is formed by a unitary base and a unitary cover. Each of the base and the cover form three of the six surfaces of a hexagonal mold cavity when the cover is placed on top of the base. The hexagonal mold may be used to form field emission display spacers and field emission display microchannels by placing etchable single fibers in the hexagonal mold to form hexagonal multiple fiber preforms. The preforms are then drawn to form multiple fibers that are placed in a rectangular mold to form a rectangular fiber block. The rectangular fiber block is then sliced into sheets which are then placed between a field emission display baseplate and a field emission display faceplate.
Abstract:
Methods for forming the lower electrode of a capacitor in a semiconductor circuit, and the capacitors formed by such methods are provided. The lower electrode is fabricated by forming a texturizing underlayer and then depositing a conductive material thereover. In one embodiment of a method of forming the lower electrode, the texturizing layer is formed by depositing a polymeric material comprising a hydrocarbon block and a silicon-containing block, over the insulative layer of a container, and then subsequently converting the polymeric film to relief or porous nanostructures by exposure to UV radiation and ozone, resulting in a textured porous or relief silicon oxycarbide film. A conductive material is then deposited over the texturizing layer resulting in a lower electrode have an upper roughened surface. In another embodiment of a method of forming the lower electrode, the texturizing underlayer is formed by depositing overlying first and second conductive metal layers and annealing the metal layers to form surface dislocations, preferably structured as a periodic network. A conductive metal is then deposited in gaseous phase, and agglomerates onto the surface dislocations of the texturizing layer, forming nanostructures in the form of island clusters. The capacitor is completed by depositing a dielectric layer over the formed lower electrode, and forming an upper capacitor electrode over the dielectric layer. The capacitors are particularly useful in fabricating DRAM cells.
Abstract:
Communications equipment can be tested using a test pattern encapsulated within a frame, and offsetting the test pattern in each successive frame. In equipment having a number of data latches receiving serial input, the introduction of the offset allows each latch, over time, to be exposed to the same pattern as the other latches. That is, the latches “see” different portions of the pattern at a given time, but over time, each can be exposed to the full pattern. Otherwise, each latch would “see” its own static pattern, different from the other latches, but the same over time with respect to itself. The offset can enhance diagnostic capabilities of the test pattern.
Abstract:
The invention includes methods of forming patterns in low-k dielectric materials by contact lithography. In a particular application, a mold having a first pattern is pressed into a low-k dielectric material to form a second pattern within the material. The second pattern is substantially complementary to the first pattern. The mold is then removed from the low-k dielectric material. The invention also includes a method of forming a mold; and includes a mold configured to pattern a mass over a semiconductor substrate during contact lithography of the mass.
Abstract:
The present invention describes thick film photolithographic molds, methods of making thick film photolithographic molds, and methods of using thick film photolithographic molds to form spacers on a substrate. The thick film photolithographic molds preferably comprise an epoxy bisphenol A novolac resin. The present invention also describes sol gel spacers comprising sodium silicates and potassium silicates. The thick film photolithographic molds and sol gel spacers of the present invention can be used in flat panel displays, such as field emission displays and plasma displays.