Abstract:
The invention provides a composite wire for electronic package, the composite wire including an alloy core member and a plating layer forming on a surface of the alloy core member. The alloy core member is silver-gold-palladium alloy. The plating layer is at least one layer of thin film of pure gold, pure palladium or gold-palladium alloy. The invention also provides a method for manufacturing the composite wire. The method includes steps of: (a) providing a wire rod, (b) forming a wire having a predetermined diameter from the wire rod by a plurality of processes including cold working and annealing and (c) forming a plating layer on a surface of the wire rod before step (b) or forming a plating layer on a surface of the wire after step (b) by electroplating, sputtering or vacuum evaporation.
Abstract:
The invention provides a composite wire for electronic package, the composite wire including an alloy core member and a plating layer forming on a surface of the alloy core member. The alloy core member is silver-palladium alloy. The plating layer is at least one layer of thin film of pure gold, pure palladium or gold-palladium alloy. The invention also provides a method for manufacturing the composite wire. The method includes steps of: (a) providing a wire rod, (b) forming a wire having a predetermined diameter from the wire rod by a plurality of processes including cold working and annealing and (c) forming a plating layer on a surface of the wire rod before step (b) or forming a plating layer on a surface of the wire after step (b) by electroplating, sputtering or vacuum evaporation.
Abstract:
An alloy wire made of a material selected from one of a group consisting of a silver-gold alloy, a silver-palladium alloy and a silver-gold-palladium alloy is provided. The alloy wire is with a polycrystalline structure of a face-centered cubic lattice and includes a plurality of grains. A central part of the alloy wire includes slender grains or equi-axial grains, and the other parts of the alloy wire consist of equi-axial grains. A quantity of the grains having annealing twins was 20 percent or more of the total quantity of the grains of the alloy wire.
Abstract:
A manufacturing method for a composite alloy bonding wire and products thereof are provided. A primary material of Ag is melted in a vacuum melting furnace, and then a secondary metal material of Pd is added into the vacuum melting furnace and is co-melted with the primary material to obtain an Ag—Pd alloy solution. The obtained Ag—Pd alloy solution is drawn to obtain an Ag—Pd alloy wire. The Ag—Pd alloy wire is then drawn to obtain an Ag—Pd alloy bonding wire with a predetermined diameter.
Abstract:
A manufacturing method for a composite alloy bonding wire and products thereof. A primary material of Au and Ag is melted in a vacuum melting furnace, and then a secondary metal material of Pd is added into the vacuum melting furnace and is co-melted with the primary material to obtain a Au—Ag—Pd alloy solution. The obtained Au—Ag—Pd alloy solution is drawn to obtain a Au—Ag—Pd alloy wire. The Au—Ag—Pd alloy wire is then drawn to obtain a Au—Ag—Pd alloy bonding wire with a predetermined diameter.
Abstract:
A manufacturing method for a silver alloy bonding wire and products thereof A primary material of Ag is melted in a vacuum melting furnace, and then a plurality of secondary metal materials are added into the vacuum melting furnace and co-melted with the primary material to obtain a silver alloy ingot. The obtained silver alloy ingot is drawn to obtain a silver alloy wire. The silver alloy wire is then drawn to obtain a silver alloy bonding wire with a predetermined diameter.
Abstract:
A manufacturing method for a composite metal bonding wire and products thereof. A material of Ag and Au is co-melted in a vacuum melting furnace, and then a plurality of trace metal elements are added into the vacuum melting furnace and co-melted with the material to obtain a composite metal ingot. The obtained composite metal ingot is drawn to obtain a composite metal wire. The composite metal wire is then drawn to obtain a composite metal bonding wire with a predetermined diameter.