Abstract:
An RF testing method and system by which a DC measurement pathway can also act like a properly terminated RF pathway. Achieving this requires that the output HI, LO, and Sense HI conductors are terminated in a frequency selective manner such that the terminations do not affect the SMU DC measurements. Once all SMU input/output impedances are controlled, as well as properly terminated to eliminate reflections, the high-speed devices will no longer oscillate during device testing, so long as the instruments maintain a high isolation from instrument-to-instrument (separate instruments are used on the gate and drain, or on the input and output of the device). The output of HI, LO and Sense HI conductors are coupled to various nodes of the DUT via three triaxial cables, the outer shieldings of which are coupled to each other and to an SMU ground.
Abstract:
A connection interface for connecting one or more devices under test (DUTs) to one or more remote test and measurement instruments includes a device-under-test connector for connecting a DUT to the interface, a host-instrument connector for connecting the interface to a host test and measurement instrument, and an electrical path between the device-under-test connector and the host-instrument connector. The connection interface also includes a display that has a first portion visually associated with the device-under-test connector and configured to display an identifier for a particular connection point on the DUT. In some embodiments, the first portion of the display is configured to display measurement data from the particular connection point on the DUT. In some embodiments, the display has a second portion that is configured to display information related to the host test and measurement instrument, or to display a name for a particular measurement of the DUT.
Abstract:
An electronic device for running an application can include a display to visually present a user interface corresponding to the application. The electronic device can also include a processor to determine whether the application is an originally-installed application and cause the display to include a visually identifiable feature in the user interface indicating that the application is not an originally-installed application responsive to a determination that the application is not an originally-installed application.
Abstract:
A method of magnetization balancing for a switching power supply having at least two MOSFETs can include measuring first and second commutation times, adjusting the timing of the on time (pulse width) of the first MOSFET's gate relative to the on time (pulse width) of the second MOSFET's gate, and determining whether the commutation times are equal.
Abstract:
An active shunt ammeter for measuring current flowing through a device under test (DUT) and method are disclosed. The active shunt ammeter includes an input configured to receive an input signal having a frequency within a frequency band and representing the current flowing through the DUT. An output is configured to generate an output voltage representing the current flowing through the DUT. The active shunt ammeter also includes a gain circuit having an amplifier with a gain characteristic that varies respect to frequency within the frequency band and a feedback element having an impedance coupled from an output of the gain circuit to a negative input of the gain circuit, the feedback element impedance being configured to change with frequency to correlate with the amplifier gain characteristic such that the feedback element impedance divided by the amplifier gain over the frequency band has minimal frequency dependency.
Abstract:
An impedance sourcing circuit for a measurement device configured to measure a device under test (DUT) and method are disclosed. The impedance sourcing circuit includes a voltage/current source. An electrically controlled variable resistance having a control input is configured to adjust the variable resistance is coupled to the DUT. A loop gain controller is coupled to the control input of the electrically controlled variable resistance. The loop gain controller is configured to drive the control input of the electrically controlled variable resistance to adjust the variable resistance to generally match the impedance of the DUT. The impedance sourcing circuit may also include a voltage detector configured to detect a voltage across the DUT and a voltage reference. The loop gain controller may be configured to drive the control input of the electrically controlled variable resistance based on the voltage detected across the DUT and the voltage reference.
Abstract:
Embodiments of the present invention provide improved techniques and devices for reducing transformer commutation distortion caused by large load currents. Traditional power supplies which have two or more phases typically commutate a transformer during the end of each phase. When the load current is large, energy stored in the transformer's leakage inductance can cause undesirable effects during commutation. Embodiments of the present invention reduce these effects by lowering the voltage across the primary side of the transformer prior to commutation. In one embodiment, a capacitor is added to the primary side of the transformer. A switch directs current through the capacitor prior to commutation, allowing the capacitor to absorb the transformer's leakage inductance energy and lower the primary side voltage. Other suitable components, such as resistors, diodes, transistors, or additional transformer windings, may also be used to reduce the primary-side voltage prior to commutation.
Abstract:
A system may include two input terminals, e.g., HI and LO, and a floating circuit that is physically separate from the input terminals and includes a gain amplifier. The floating circuit can be surrounded by a conductive enclosure that is electrically connected to the second input terminal. The floating circuit can further switch between input signals received from the first and second input terminals to the gain amplifier and the floating circuit ground.
Abstract:
A device with low dielectric absorption includes a printed circuit board (PCB), a component connection area including a first conductor layered on a top surface of the component connection area and a second conductor layered on a bottom surface of the component connection area, an aperture surrounding the component connection area, a low-leakage component connecting the component connection area to the PCB across the aperture, and a guard composed of a third conductor at least substantially surrounding the aperture on a top surface of the PCB and a fourth conductor at least substantially surrounding the aperture on a bottom surface of the PCB.
Abstract:
A method including displaying an orthogonal grid on a touchscreen display. The touchscreen display is in communication with a test and measurement instrument. The orthogonal grid has an axis that is associated with a controlled output parameter of the test and measurement instrument. The method also includes detecting a touch input at the touchscreen display. The touch input includes a continuous slide gesture made by a user substantially along the axis of the orthogonal grid. The slide gesture begins at a first location on the axis and ends at a second location on the axis. Also, the method includes adjusting the controlled output parameter of the test and measurement instrument from an initial value to an adjusted value. The initial value corresponds to the first location of the slide gesture and the adjusted value corresponds to the second location of the slide gesture. Systems are also disclosed.