Abstract:
A memory circuit includes a word line, a data storage circuit including one or more memory cells or sub-cells, and an inverter coupled between the word line and the N memory cells. The inverter inverts a word-line signal input into a read port of the cells or sub-cells. Because the word-line inverter is local to each cell or sub-cell, DC offset is substantially reduced which translates into a reduction in leakage current.
Abstract:
An interconnect architecture is provided to reduce power consumption. A first driver may drive signals on a first interconnect and a second driver may drive signals on a second interconnect. The first driver may be powered by a first voltage and the second driver may be powered by a second voltage different than the first voltage.
Abstract:
An adder circuit includes a number of selectors and an adder. The selectors feed the adder with multiple input data bits. Each of the selectors includes a combination of a multiplexing network and a sense amplifier to select from a number of input values to generate the multiple input data bits. The combination of the multiplexing network and the sense amplifier acts as the state-holding element at the input of the adder, avoiding the overheads of an explicit latch stage.
Abstract:
A static receiver having a first inversion threshold for received signals undergoing a HIGH-to-LOW transition, and a second inversion threshold for received signals undergoing a LOW-to-HIGH transition, where the first inversion threshold is greater than the second inversion threshold. One embodiment comprises a static receiver, a pFET, and a nFET, where when a HIGH-to-LOW transition is being received at the receiver's input port, the pFET is coupled to the input port so as to contribute to raising the inversion threshold, and when a LOW-to-HIGH transition is being received at the input port, the nFET is coupled to the input port so as to contribute to lowering the inversion threshold. Other embodiments are described and claimed.
Abstract:
A register file includes a multi-level multiplexer output circuit coupled to a global bit trace and keeper circuitry coupled to said global bit trace and a driving signal trace. The register file also has decoder circuitry coupled to said keeper circuitry to selectively decouple the driving signal trace from said global bit trace.
Abstract:
A technique is described to allow testing of high-speed digital circuits using lower speed testing equipment, to circuits to be placed into a sleep mode, and to allow burn-in testing of digital circuits with minimal overhead in terms of silicon area or performance.
Abstract:
The present invention is in the area of memory architecture. More particularly, the present invention provides a method, apparatus, machine-readable medium, and system reduce leakage current in memory. Embodiments may take advantage of the reverse bias characteristic of circuit elements, such as the reverse gate-to-source bias characteristic of a transistor, within the memory to limit leakage and provide for a leakage tolerant data storage technique. Embodiments may also enable the reverse bias characteristic of circuit elements, such as the reverse gate-to-source bias characteristic of a transistor, to be taken advantage of by sourcing charge from data storage elements.
Abstract:
A low power architecture for register files is provided. A decoder receives a specified bit address divided into a first input and a second input. The decoder is split into a first stage and a second stage. A pre-decoder in the first stage receives the first input, identifies a local bitline that is accessed, and outputs a first signal to a register file array. A post decoder in the second stage receives the second input and the first signal, processes the identification of the local bitline, and generates a second signal to be sent to the register file array. A delay synchronizes the first signal and the second signal so that both signals reach the register file array simultaneously.
Abstract:
Techniques and mechanisms for providing data to be used in an in-memory computation at a memory device. In an embodiment a memory device comprises a first memory array and circuitry, coupled to the first memory array, to perform a data computation based on data stored at the first memory array. Prior to the computation, the first memory array receives the data from a second memory array of the memory device. The second memory array extends horizontally in parallel with, but is offset vertically from, the first memory array. In another embodiment, a single integrated circuit die includes both the first memory array and the second memory array.
Abstract:
Techniques and mechanisms for providing data to be used in an in-memory computation at a memory device. In an embodiment a memory device comprises a first memory array and circuitry, coupled to the first memory array, to perform a data computation based on data stored at the first memory array. Prior to the computation, the first memory array receives the data from a second memory array of the memory device. The second memory array extends horizontally in parallel with, but is offset vertically from, the first memory array. In another embodiment, a single integrated circuit die includes both the first memory array and the second memory array.