Abstract:
Disclosed are systems and methods for manipulating chemical, biological, and/or biochemical samples, optionally supported on substrates and/or within chambers, for example biological samples contained on chips, within biological chambers, etc. In certain embodiments, an apparatus configured to be able to position a chamber or other substrate in one or more modules surrounding the apparatus is disclosed. The apparatus may be configured to be able to move the chamber or substrate in any set of directions, such as radially, vertically, and/or rotationally, with respect to the apparatus. The apparatus may be manually operated and/or automatically controlled. Examples of modules include, but are not limited to, stacking or holding modules, barcode readers, filling modules, sampling modules, incubation modules, sensor modules (e.g., for determining cell density, cell viability, pH, oxygen concentration, nutrient concentration, fluorescence measurements, etc.), assay modules (e.g., for ELISA or other biological assays), data analysis and management modules, control modules, etc. Sensors, control systems, and the like may also be positioned to facilitate operation of the device. Certain embodiments of the invention may be used, for example, to promote or optimize chemical synthesis or cell or biological growth, for instance, for the production of compounds such as drugs or other therapeutics.
Abstract:
The present invention is directed to materials and reactor systems having humidity and/or gas control. The material may have high oxygen permeability and/or low water vapor permeability. In some cases, the material may have sufficient permeance and/or permeability to allow cell culture to occur in a chip or other reactor system using the material. In certain embodiments, the material may be positioned adjacent to or abut a reaction site within a chip or reactor; in other embodiments, the material may be positioned such that it is in fluidic communication with the reaction site. The material may also be porous and/or transparent in some cases. In one set of embodiments, the material include a polymer that is branched, and/or contains bulky side groups that allow the polymer to have a more open structure. In some cases, the material may include two or more layers. Each layer may have a desired property, which may include, for example, permeability, transparency, cytophilicity, biophilicity, hydrophilicity, or a structural feature. In some embodiments, the material may be chosen so as to promote cell growth within the chip or reactor.
Abstract:
Disclosed are systems and methods for manipulating chemical, biological, and/or biochemical samples, optionally supported on substrates and/or within chambers, for example biological samples contained on chips, within biological chambers, etc. In certain embodiments, an apparatus configured to be able to position a chamber or other substrate in one or more modules surrounding the apparatus is disclosed. The apparatus may be configured to be able to move the chamber or substrate in any set of directions, such as radially, vertically, and/or rotationally, with respect to the apparatus. The apparatus may be manually operated and/or automatically controlled. Examples of modules include, but are not limited to, stacking or holding modules, barcode readers, filling modules, sampling modules, incubation modules, sensor modules (e.g., for determining cell density, cell viability, pH, oxygen concentration, nutrient concentration, fluorescence measurements, etc.), assay modules (e.g., for ELISA or other biological assays), data analysis and management modules, control modules, etc. Sensors, control systems, and the like may also be positioned to facilitate operation of the device. Certain embodiments of the invention may be used, for example, to promote or optimize chemical synthesis or cell or biological growth, for instance, for the production of compounds such as drugs or other therapeutics.
Abstract:
This disclosure generally relates to systems and methods for manipulating chambers and other substrates for chemical, biological, or biochemical samples, such as cell culture and other chambers, within units such as incubators. In certain embodiments, the invention provides a technique for maintaining a plurality of substrates or chambers in a housing within which a predetermined environment is maintained, different from the environment external to the housing, and moving substrates or chambers in and out of the housing, in some cases without creating a large opening in the housing (e.g., by opening a door significantly larger than the substrates). A technique is provided, in certain embodiments, in which a plurality of substrates are mounted in fixed, secured relation to each other within a housing providing a predetermined, controlled environment, and are moved within the housing so that they can be evenly exposed to any differences in environment within the housing. In certain embodiments, the invention provides a technique for agitating a fluid within one or more chambers or substrates within a housing that can provide environmental control, in certain embodiments without physically stirring the fluid, such as with a stir bar or other stirring element in direct contact with the fluid. In still another embodiment, the invention provides a method for rotating a substrate or chamber about a substantially vertical and/or horizontal axis. In some cases, any of the above-described systems can be rotated at a speed sufficient to cause separation of a substance within the chamber or substrate.
Abstract:
Computer-facilitated design of large-scale, multi-factorial cell culture experiments and the like, and control of reaction sites and/or arrays of reaction sites to perform such experiments using automated devices. In certain cases, the invention is directed to controlling a plurality of cell culture experiments, e.g., using an automated cell culture device. In one set of embodiments, a data structure or a “descriptor” for use with cell culture experiments is provided. The descriptor may be used, for instance, to control one or more cell culture experiments, to identify one or more cell culture experiments, and/or to identify or “tag” data arising from one or more cell culture experiments, e.g., for further analysis or recall.
Abstract:
Fluid transfer devices described herein can include a body portion and a tip portion. A fluid pathway extends through the body and tip portions through which fluid may be transferred, for example, from a fluid-dispensing apparatus to a fluidic chamber of a microreactor. In some embodiments, the fluid transfer device is connected to the fluid-dispensing apparatus with an engaging element. The engaging element may be part of the body, and can enable the dispensing apparatus to repeatedly engage the body at one predetermined position. The body is capable of storing the fluid received from the dispensing apparatus. The tip portion may be formed of a rigid material (e.g., a metal), and/or may be configured to repeatedly pierce a septum without damaging either the tip or the body. Advantageously, in certain embodiments, the fluid transfer device can controllably transfer small volumes of fluid (e.g., 1 μL) with a high degree of accuracy.
Abstract:
The present disclosure generally relates to chemical, biological, and/or biochemical reactor chips and/or reaction systems such as microreactor systems, as well as methods for constructing and using such systems. In some cases, humidity control materials are utilized to provide beneficially high rates of gas exchange. The humidity control materials may be used, in certain instances, to provide at least adequate, and in certain embodiments superior, gas exchange for systems having small volumes. In some cases, the currently disclosed materials include certain polymers, e.g., poly(acetylene)s such as poly(alkylacetylene)s. The polymers may be at least partially halogenated (for example, fluorinated) in some instances. In certain embodiments, a chip and/or a reaction system may be constructed so as to promote cell growth within it. In some embodiments, the chips may include one or more reaction sites. The reaction sites can be very small, for example, with a volume of less than about 1 ml. In certain embodiments, a reaction system is able to detect, measure and/or control an environmental factor such as the temperature, pressure, CO2 concentration, O2 concentration, relative humidity, pH, etc., associated with one or more reaction sites, by using one or more sensors, actuators, processors, and/or control systems. In certain embodiments, the present disclosure discloses materials and systems having humidity and/or gas control, for example, for use with a reaction system. Such materials may have high oxygen permeability and/or low water vapor permeability. In certain embodiments, the disclosed devices can employ light-interacting components suitable for use in reaction systems. These components may include waveguides, optical fibers, light sources, photodetectors, optical elements, and the like.
Abstract:
The present invention provides techniques for conveniently and reliably storing and/or retrieving data associated with a chemical, biological, or biochemical chip, reactor, or reaction system. The data can pertain to the reactor; to chemical, biological, or biochemical species introduced into, taken from, or otherwise associated with the reactor; to conditions to which the reactor and/or some or all of its contents has been, is being, or will be exposed to, or the like. Various aspects of the present invention relate to memory and data storage components suitable for use in chips or other reaction systems. These components may include silicon integrated circuits, magnetic media, optical media, radio-frequency tags, smart cards, bar-codes and other kinds of data storage devices. The chip may contain a reaction site having a volume of less than about 2 ml. In some embodiments, the chip may be constructed in such a way as to be able to support a living cell. The chip may be used for imaging or analysis, or the chip may be used to facilitate a chemical or biological reaction, which may be light-sensitive or light-activated in certain cases. Other facilitated reactions may include the production and/or consumption of a chemical or biological species. In some embodiments, the chip may include more than one component or component type, and/or more than one reaction site.