Abstract:
A mask that is capable of forming a thin-film transistor (TFT) with improved electrical characteristics is presented. The mask includes a drain mask pattern, a source mask pattern and a light-adjusting pattern. The drain mask pattern blocks light for forming a drain electrode. The source mask pattern blocks light for forming a source electrode and faces the drain mask pattern. A distance between the drain and source mask patterns is no more than the resolution of an exposing device. The light-adjusting pattern is formed between end portions of the source mask pattern and the drain mask pattern to block at least some light from entering a space between the source and drain mask patterns.
Abstract:
A thin film transistor array panel includes a substrate, a gate line formed on the substrate and including a gate electrode, a gate insulating layer formed on the gate line, a semiconductor formed on the gate insulating layer and including a channel of a thin film transistor, a data line formed on the semiconductor and including a source electrode and a drain electrode formed on the semiconductor and opposite to the source electrode with respect to the channel of the thin film transistor, wherein the channel of the thin film transistor covers both side surfaces of the gate electrode.
Abstract:
In an overload protective apparatus of a compressor and its method capable of preventing damage of a compressor due to overload by removing an overload protector and using an operation control device operating the compressor, the overload protective apparatus includes a reference current setting unit for presetting a reference current value for operating the compressor normally; a microcomputer for generating a power cutoff signal when the detected current value is greater than the reference current value and generating a power supply signal when the detected current value is smaller than the reference current value; and a power supply unit for cutting off power applied to the compressor on the basis of the power cutoff signal or applying power to the compressor on the basis of the power supply signal.
Abstract:
A method of manufacturing a thin film transistor array panel includes forming a gate line including a gate electrode, forming a gate insulating layer on the gate line, forming a semiconductor stripe on the gate insulating layer; forming ohmic contacts on the semiconductor stripe, forming a data line including a source electrode and a drain electrode on the ohmic contacts, depositing a passivation layer on the data line and the drain electrode, and forming a pixel electrode connected to the drain electrode. The formation of the data line and the drain electrode, the ohmic contacts, and the semiconductor stripe includes depositing an intrinsic silicon layer, an extrinsic silicon layer, and a conductor layer on the gate insulating layer, forming a photoresist including a second portion corresponding to a channel area between the source electrode and the drain electrode, and a first portion corresponding to a wire area on the data line and the drain electrode, wherein the first portion is thicker than the second portion, etching the conductor layer corresponding to a remaining area except for the wire and the channel area using the photoresist as an etch mask, removing the second portion to expose the conductor layer on the channel areas, etching the intrinsic silicon layer and the extrinsic silicon layer on the remaining area, etching the conductor layer and the extrinsic silicon layer on the channel areas, and removing the first portion.
Abstract:
A method of manufacturing a thin film transistor array panel includes forming a gate line including a gate electrode, forming a gate insulating layer on the gate line, forming a semiconductor stripe on the gate insulating layer; forming ohmic contacts on the semiconductor stripe, forming a data line including a source electrode and a drain electrode on the ohmic contacts, depositing a passivation layer on the data line and the drain electrode, and forming a pixel electrode connected to the drain electrode. The formation of the data line and the drain electrode, the ohmic contacts, and the semiconductor stripe includes depositing an intrinsic silicon layer, an extrinsic silicon layer, and a conductor layer on the gate insulating layer, forming a photoresist including a second portion corresponding to a channel area between the source electrode and the drain electrode, and a first portion corresponding to a wire area on the data line and the drain electrode, wherein the first portion is thicker than the second portion, etching the conductor layer corresponding to a remaining area except for the wire and the channel area using the photoresist as an etch mask, removing the second portion to expose the conductor layer on the channel areas, etching the intrinsic silicon layer and the extrinsic silicon layer on the remaining area, etching the conductor layer and the extrinsic silicon layer on the channel areas, and removing the first portion.
Abstract:
Provided are a display substrate, a display device, and a method of manufacturing the display substrate. The display substrate includes: a substrate in which a pixel region is defined; a gate electrode and a gate pad are formed on the substrate; a gate insulating layer formed on the gate electrode and the gate pad; a buffer layer pattern overlaps the gate electrode and is formed on the gate insulating layer; an insulating film pattern formed on the buffer layer pattern; an oxide semiconductor pattern formed on the insulating film pattern; a source electrode formed on the oxide semiconductor pattern; and a drain electrode formed on the oxide semiconductor pattern and is separated from the source electrode.
Abstract:
A thin-film transistor includes a semiconductor pattern, a first gate electrode, a source electrode, a drain electrode and a second gate electrode. The semiconductor pattern is formed on a substrate. A first conductive layer has a pattern that includes the first gate electrode which is electrically insulated from the semiconductor pattern. A second conductive layer has a pattern that includes a source electrode electrically connected to the semiconductor pattern, a drain electrode spaced apart from the source electrode, and a second gate electrode electrically connected to the first gate electrode. The second gate electrode is electrically insulated from the semiconductor pattern, the source electrode and the drain electrode.
Abstract:
A thin film transistor panel includes an insulating substrate, a gate insulating layer disposed on the insulating substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopper disposed on the oxide semiconductor layer, and a source electrode and a drain electrode disposed on the etch stopper.
Abstract:
A thin film transistor panel includes a substrate, a light blocking layer on the substrate, a first protective film on the light blocking layer, a first electrode and a second electrode on the first protective film, an oxide semiconductor layer on a portion of the first protective film exposed between the first electrode and the second electrode, an insulating layer, a third electrode overlapping with the oxide semiconductor layer and on the insulating layer, and a fourth electrode on the insulating layer. The light blocking layer includes first sidewalls, and the first protective film includes second sidewalls. The first and the second sidewalls are disposed along substantially the same line.
Abstract:
A display substrate includes; a gate pattern including a gate electrode disposed on a substrate, a gate insulation layer disposed on the substrate and the gate pattern, an insulation pattern including; a first thickness part disposed on a first area of the gate insulation layer overlapping the gate electrode and a second thickness part disposed on a second area of the gate insulation layer adjacent to the first area, an oxide semiconductor pattern disposed on the first thickness part of the first area, an etch stopper disposed on the oxide semiconductor pattern, a source pattern including a source electrode and a drain electrode which contact the oxide semiconductor pattern, and a pixel electrode which contacts the drain electrode.