摘要:
A method of manufacturing a non-volatile memory device providing a semiconductor layer in which a cell region and a peripheral region are defined, sequentially forming a first insulating layer, a first conductive layer, a second insulating layer, and a second conductive layer on the cell region and the peripheral region, forming a trench for exposing a portion of the first conductive layer of the peripheral region, wherein the trench is formed by removing portions of the second conductive layer and the second insulating layer in the peripheral region, performing a trimming operation for removing portions of the second conductive layer and the second insulating layer of the cell region, forming a spacer on a side surface of the trench, and forming a silicide layer that is electrically connected to the first conductive layer, wherein the silicide layer is formed by performing a silicidation process on the spacer.
摘要:
Provided are a semiconductor device and a method of fabricating the semiconductor device. The semiconductor device can include first transistors that include a first gate insulating layer having a first thickness and second transistors include a second gate insulating layer having a second thickness less than the first thickness. At least one of the transistors formed on the first or second gate insulating layers is directly over a dummy well.
摘要:
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes a semiconductor substrate including a cell array region, memory cell transistors disposed at the cell array region, bitlines disposed on the memory cell transistors, and a source plate disposed between the memory cell transistors and the bitlines to veil the memory cell transistors thereunder.
摘要:
Example embodiments are directed to a method of forming a nonvolatile memory structure and a nonvolatile memory structure including a plurality of charge storage patterns, wherein an electrical coupling distance (Lc) between adjacent charge storage patterns is larger than a direct geometric distance (Ls) between adjacent charge storage patterns.
摘要:
A nonvolatile memory device includes a device isolating layer disposed at a substrate to define an active region and a floating gate disposed on the active region. The floating gate includes a flat portion and a pair of wall portions. The pair of wall portions extend upward from both edges of the flat portion adjacent to the device isolating layer and face each other. The nonvolatile memory device further includes a tunnel insulating layer interposed between the floating gate and the active region. Moreover, the wall portions and the flat portion are formed of a single layer, and the thickness of the flat portion is larger than a width of the wall portions.
摘要:
A method of fabricating a flash memory device includes forming a device isolation layer at a predetermined region of a semiconductor substrate having a cell array region and a peripheral circuit region. The device isolation layer defines a first active region and a second active region in the cell array region and the peripheral circuit region, respectively. A gate conductive layer is formed on the entire surface of the semiconductor substrate having the device isolation layer. The gate conductive layer is patterned to form a floating gate pattern covering the first active region. At this time, the peripheral circuit region is still covered with the gate conductive layer. An inter-gate dielectric layer and a control gate conductive layer are formed on the entire surface of the substrate including the floating gate pattern. The control gate conductive layer and the inter-gate dielectric layer, which are located in the peripheral circuit region, are selectively removed to expose the gate conductive layer in the peripheral circuit region.
摘要:
In a cell array region of a NOR-type mask ROM device and a fabricating method therefor, following formation of a plurality of word lines parallel to one another on a semiconductor substrate, a plurality of sub-bit lines intersecting the top portion of the plurality of word lines at right angles are formed. Trench regions are formed on the semiconductor substrate exposed by the plurality of word lines and the plurality of sub-bit lines. An interlayer insulating layer is formed on the entire surface of the resulting material, and a plurality of bit lines which are parallel to one another are formed on the interlayer insulating layer.
摘要:
The present invention provides a nonvolatile memory device having high reliability with novel sidewall spacer structures. The gate stack structure for use in a nonvolatile memory device comprises a semiconductor substrate, a gate stack formed on the semiconductor substrate. The gate stack has a sidewall and a top surface. A multi-layer sidewall spacer structure is formed on the sidewall of the gate stack. The multi-layer sidewall spacer structure includes a first oxide layer, a first nitride layer, a second oxide layer, and a second nitride layer that are sequentially stacked. With the present invention, even if the second nitride layer is perforated or damaged during the formation of contact holes, sidewalls of the gate stack of nonvolatile memory cell can be protected with the first nitride layer from mobile ions. Also, etching damage to source/drain regions or field regions can be reduced.
摘要:
A method for fabricating a mask ROM capable of effectively reducing the distance of buried impurity diffusion regions. The method includes stacking a pad oxide layer and a first anti-oxidation layer in sequence in a cell array region and a peripheral circuit region of a semiconductor substrate. The anti-oxidation layer is partially etched to form a first pattern defining an isolation region of the peripheral circuit region and a second pattern defining a buried impurity diffusion region of the cell array region, and a second anti-oxidation layer is stacked, and then the second anti-oxidation layer stacked in the peripheral circuit region is removed, so that the second anti-oxidation layer stacked in the cell array region remains. Then, a field oxide layer is formed in the isolation region of the peripheral circuit region, exposed by the remaining second anti-oxidation layer; and impurities are implanted to form the buried impurity diffusion region.
摘要:
A NOR-type mask ROM reduces the resistance ratio of buried diffusion layers and improves the drive capacity of bank selection transistors by utilizing sub-bit line selection transistors located near the center of a memory cell array. The sub-bit line selection transistors are connected to a pair of sub-bank selection lines that divide the memory cell array into symmetric upper and lower portions. The bank selection transistors couple alternate sub-bit lines to main bit lines at both ends of the sub-bit lines, thereby forming a dual current path between the main bit lines and the memory cells coupled to the sub-bit lines.