Abstract:
A film is described comprising a (meth)acrylic polymer and a polyvinyl acetal (e.g. butyral) resin. In some embodiments, the film has a glass transition temperature (i.e. Tg) ranging from 30° C. to 60° C. In some embodiments, the film has a gel content of at least 20% or greater. In some embodiments, the film has an elongation at break of at least 175%. The film typically comprises photoinitiator as a result of the method by which the film was made. The film may be a monolithic film or a layer of a multilayer film.
Abstract:
An adhesive-applying method is disclosed herein. The method comprises: providing a film comprising pressure sensitive adhesive coated on a major surface thereof; heating the film to a softening point of the film; and pressing the film against a substrate with an application device, the application device comprising a film-contacting portion, the film-contacting portion comprising a foam material and having a thermal conductivity of less than 1.8 BTU/hr-in-ft2-° F.; wherein the pressure sensitive adhesive on the major surface of the film adheres to the substrate. Application devices and kits that may be used in conjunction with the method are also disclosed herein.
Abstract:
The present disclosure is generally directed to illumination devices, and methods for making the same. The device, in particular, includes a first conductor layer, a first insulator layer disposed on the first conductor layer and having at least one first aperture defined therein through the first insulator layer, a second conductor layer disposed on the first insulator layer and having at least one second aperture defined therein through the second conductor layer and positioned to align with the at least one first aperture, and a light manipulation layer disposed on the second conductor layer and having at least one pair of apertures defined therein through the light manipulation layer including a third aperture and a fourth aperture, where the third aperture is positioned to align with the at least one second and first apertures.
Abstract:
The present disclosure is generally directed to illumination devices, and methods for making the same. The device, in particular, includes a first conductor layer, a first insulator layer disposed on the first conductor layer and having at least one first aperture defined therein through the first insulator layer, a second conductor layer disposed on the first insulator layer and having at least one second aperture defined therein through the second conductor layer and positioned to align with the at least one first aperture, and a light manipulation layer disposed on the second conductor layer and having at least one pair of apertures defined therein through the light manipulation layer including a third aperture and a fourth aperture, where the third aperture is positioned to align with the at least one second and first apertures.
Abstract:
The present disclosure is generally directed to illumination devices, and methods for making the same. The device, in particular, includes a first conductor layer, a first insulator layer disposed on the first conductor layer and having at least one first aperture defined therein through the first insulator layer, a second conductor layer disposed on the first insulator layer and having at least one second aperture defined therein through the second conductor layer and positioned to align with the at least one first aperture, and a light manipulation layer disposed on the second conductor layer and having at least one pair of apertures defined therein through the light manipulation layer including a third aperture and a fourth aperture, where the third aperture is positioned to align with the at least one second and first apertures.
Abstract:
A film is described comprising a (meth)acrylic polymer and a polyvinyl acetal (e.g. butyral) resin. In some embodiments, the film has a glass transition temperature (i.e. Tg) ranging from 30° C. to 60° C. In some embodiments, the film has a gel content of at least 20% or greater. In some embodiments, the film has an elongation at break of at least 175%. The film typically comprises photoinitiator as a result of the method by which the film was made. The film may be a monolithic film or a layer of a multilayer film.
Abstract:
A film is described comprising a (meth)acrylic polymer and a polyvinyl acetal (e.g. butyral) resin. In some embodiments, the film has a glass transition temperature (i.e. Tg) ranging from 30° C. to 60° C. In some embodiments, the film has a gel content of at least 20% or greater. In some embodiments, the film has an elongation at break of at least 175%. The film typically comprises photoinitiator as a result of the method by which the film was made. The film may be a monolithic film or a layer of a multilayer film.
Abstract:
Methods of adhering graphic film on an irregular substrate are disclosed. The methods includes providing a polymer film composite having two or more layers with at least one layer having a glass transition temperature of at least about 40° C., the polymer film composite having a first side and a second side, and an adhesive layer disposed on the second side. Then the method includes, positioning the adhesive layer against the irregular substrate, heating the polymer film composite, and pressing the heated polymer film against the irregular substrate.
Abstract:
The present application is directed to articles useful as graphic films. Specifically, the present application is directed to an article comprising a film layer, the film layer comprising a polymer blend comprising a thermoplastic polyurethane and a polyvinyl butyral, and an adhesive layer adjacent the film layer.
Abstract:
An adhesive-applying method is disclosed herein. The method comprises: providing a film comprising pressure sensitive adhesive coated on a major surface thereof; heating the film to a softening point of the film; and pressing the film against a substrate with an application device, the application device comprising a film-contacting portion, the film-contacting portion comprising a foam material and having a thermal conductivity of less than 1.8 BTU/hr-in-ft2-° F.; wherein the pressure sensitive adhesive on the major surface of the film adheres to the substrate. Application devices and kits that may be used in conjunction with the method are also disclosed herein.