Abstract:
Slide input component assemblies of an electronic device and methods for making the same are provided. In some embodiments, a slide input component assembly may include a slide button subassembly that may have a knob, a base, a retention mechanism that may couple the knob to the base, and a shell part that may be provided about at least a portion of the base. The slide input component assembly may also include a slide switch subassembly that may have a switch that may be configured to move along a switch path when the slide button subassembly moves along a button path.
Abstract:
An electronic device may have a display mounted in a housing. The display may have layers such as polarizer layers, a color filter layer, and a thin-film transistor layer. Display layers such as color filter layers and thin-film-transistor layers may have glass substrates. Notches or other openings may be formed in the layers of a display. For example, a notch with a curved chamfered edge may be formed in a lower end of a thin-film-transistor layer. A component such as a button may overlap the notch. Structures such as sensors, cameras, acoustic components, and other electronic components, buttons, communications path structures such as flexible printed circuit cables and wire bonding wires, and housing structures may be received within a display layer notch.
Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include a single piece housing and a display module. The display module can include a protective top glass cover that is bonded to a plastic display frame and surrounded by a seal frame. The display module can also include a display panel and its associated circuitry suspended from the display frame below the protective glass cover. The display module is coupled to the single piece housing using mounting clips in a manner that allows the display module to move relative to the single piece housing during an impact event. The plastic display frame can include inserts that provide structural support near openings in the single piece housing.
Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include at least a single piece housing. The single piece housing can be machined from a single billet of material, such as a billet of aluminum. The single piece housing can include ledges with a surface receiving a trim bead and a cover. Corner brackets can be attached to the single piece housing to improve the damage resistance of the housing.
Abstract:
An electronic device may have a display mounted in a housing. The display may have layers such as polarizer layers, a color filter layer, and a thin-film transistor layer. Display layers such as color filter layers and thin-film-transistor layers may have glass substrates. Notches or other openings may be formed in the layers of a display. For example, a notch with a curved chamfered edge may be formed in a lower end of a thin-film-transistor layer. A component such as a button may overlap the notch. Structures such as sensors, cameras, acoustic components, and other electronic components, buttons, communications path structures such as flexible printed circuit cables and wire bonding wires, and housing structures may be received within a display layer notch.
Abstract:
The disclosed embodiments provide a battery cell. The battery cell includes a set of layers forming a non-rectangular shape, wherein the set of layers comprises a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a first conductive tab coupled to the cathode and a second conductive tab coupled to the anode. The layers are enclosed in a flexible pouch, and the first and second conductive tabs are extended through seals in the pouch to provide terminals for the battery cell. Furthermore, the non-rectangular shape is created by removing material from one or more of the layers.
Abstract:
The disclosed embodiments provide a battery cell. The battery cell includes a set of layers forming a non-rectangular shape, wherein the set of layers comprises a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a first conductive tab coupled to the cathode and a second conductive tab coupled to the anode. The layers are enclosed in a flexible pouch, and the first and second conductive tabs are extended through seals in the pouch to provide terminals for the battery cell. Furthermore, the non-rectangular shape is created by removing material from one or more of the layers.
Abstract:
The described embodiment relates generally to the field of inductive heating. More specifically an inductive heater designed for use in assembling electronics is disclosed. A number of methods for shaping a radio-frequency (RF) receiver structure are disclosed for the purpose of completing an inductive bonding process without causing harm to adjacent electrical components.
Abstract:
Pressure indicator pressure sensitive adhesive may contain microspheres that burst and release indicator when subjected to pressure and thereby produce a detectable indication of how much pressure has been applied when forming an adhesive joint between opposing structures. Electronic device structures can be assembled using the pressure indicator pressure sensitive adhesive. A camera or other sensor may monitor joint formation. The camera can gather infrared image data, visible light image data, or ultraviolet light image data. Sensor data such as magnetic or ultrasonic sensor data can also be collected on an adhesive joint. Joint inspection can be performed on test structures and production structures and corresponding adjustments made to the joint formation process. Positioners and other equipment that compresses the pressure indicator pressure sensitive adhesive can be adjusted in real time or calibrated using information about the condition of the pressure indicator pressure sensitive adhesive.
Abstract:
A battery assembly includes at least a plurality of battery cells that includes at least a first and a second battery cell each attached to a distributed battery monitoring unit, the second battery cell being associated with an external circuit, the second battery cell connected to a battery management unit (BMU) by way of a pre-formed battery contact shaped to accommodate the external circuit. The plurality of battery cells are electrically connected to at least the BMU such that each of the plurality of battery cells are substantially aligned with each other thereby preserving a battery profile corresponding to unconnected battery cells.