Abstract:
A bracket assembly suitable for use with an electronic device is described. The bracket assembly may include a bracket body having a channel. The bracket assembly may further include a membrane embedded in the bracket body and designed to allow air, but not liquid (such as water), to pass through the membrane. The membrane may be at least partially surrounded by a membrane support molded to the membrane. The membrane and the membrane support may be disposed in a molding tool to receive a material used to mold the bracket body over the membrane and the membrane support. During the molding operation, the membrane support may act as a buffer to shield the membrane from temperature and pressure increases associated with the molding operation of the bracket body. The bracket assembly may improve the ability of the electronic device to prevent liquid ingress.
Abstract:
An input mechanism for a portable electronic device includes a rotational manipulation mechanism, such as a cap or shaft. The input mechanism also includes a sensor having first capacitive elements coupled to the manipulation mechanism, second capacitive elements, and a dielectric positioned between the first and second capacitive elements. Movement of the manipulation mechanism alters the positions of the first and second capacitive elements with respect to each other and is determinable based on capacitance changes resulting therefrom. In some implementations, the second capacitive elements may be part of an inner ring or partial ring nested at least partially within an outer ring or partial ring.
Abstract:
Capacitive sensor assemblies for electronic devices, and methods of forming capacitive sensor assemblies. The capacitive sensor assembly may include a top component having an intermediate layer formed on the top component, a bottom component positioned opposite the top component, a silicone layer positioned between the top component and the bottom component, and a first electrical trace positioned adjacent the silicone layer.
Abstract:
An electronic device has a concealed external electrical connector that may be activated by a pin of a mating connector. When the pin applies a force to an electrically conductive and flexible region of an exterior housing of an electronic device the electrically conductive region deflects inwards coupling to a contact within the electronic device. A bi-directional communications path is then established from the pin of the connector, through the conductive portion of the housing, to the contact and to circuitry within the housing of the electronic device.
Abstract:
Transparent structures containing a transparent electrically conductive fluid are used for aesthetically appealing designs and/or improved fatigue performance. Some structures have multiple isolated conductors while others have a single conductive area that may be used as a transparent antenna or a transparent EMI shield. Other embodiments employ fluids that change crystalline structure under an applied voltage such that a structure can change color and/or display a message.
Abstract:
Electrical components such as integrated circuits and other components may be mounted on a substrate such as a printed circuit substrate. A molded plastic cap may cover the components and a portion of the printed circuit substrate to form a packaged electrical device. Metal structures such as springs, posts, and other metal members may be insert molded within the plastic cap. A metal layer on the surface of the cap may be patterned to from electromagnetic shielding, signal paths, contact pads, sensor electrodes, antennas, and other structures. Multiple substrates each with a respective set of mounted electrical components may be joined using a flexible printed circuit. The flexible printed circuit may be covered with a rigid cap portion or an elastomeric material or may be left uncovered.
Abstract:
An electronic device has structures that are assembled using attachment structures. The attachment structures change shape to help join the electronic device structures together. Structures that may be joined together can include electronic device housing structures, display structures, internal device components, electrical components, and other portions of an electronic device. The attachment structures can include heat-activated attachment structures, structures that are activated using other types of applied energy, and structures that change shape due the application of chemicals or other treatments.
Abstract:
Board-to-board connectors that may provide durable and reliable connections, may save board space, and may be easy to manufacture. One example may provide board-to-board connectors that provide durable connections by providing a seal between board-to-board plugs and receptacles. The seal may be an O-ring, gasket, or other seal. The seal may protect contacts on the board-to-board connectors from exposure to fluids, such as water or other corrosive fluids. This seal may provide a level of redundancy with one or more seals protecting a device from external fluids, such as a seal at or in the device enclosure.
Abstract:
Adhesive may be used to bond electronic device structures together. The adhesive may be a heat activated film. Heat to activate the film may be produced by vibrating electronic device structures so that they rub against each other. An ohmic heating element may be used to produce heat under the control of circuitry inside an electronic device and may be adjusted based on temperature sensor data. Infrared light may pass through a display cover layer to activate the heat activated film. Radio-frequency signals may heat the heat activated film and may be absorbed by fibers in the film or resonant elements such as metal traces. Exothermic reactions may be used to activate the film. An ultraviolet light source may initiate curing of a solid adhesive film layer before the layer is pressed between structures to be joined. A display may produce light that cures adhesive in an electronic device.
Abstract:
An electrical board-to-board connector including a flexible cable assembly having a low profile or dimensionally reduced configuration. The connector body of a cable assembly may be widened to provide the structural rigidity sufficient to support an array of solder lead connections. Other support elements may be omitted from the cable assembly, which results in a reduced height dimension. The flexible cable assembly may also include a cowling used to retain the cable assembly against a circuit board. The cowling may also be configured to reduce the dimensions or dimensional footprint of the connection.