Nanocrystal doped matrixes
    12.
    发明申请
    Nanocrystal doped matrixes 有权
    纳米晶体掺杂基质

    公开(公告)号:US20070034833A1

    公开(公告)日:2007-02-15

    申请号:US11492717

    申请日:2006-07-24

    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

    Abstract translation: 提供掺杂半导体纳米晶体的矩阵。 在某些实施方案中,半导体纳米晶体具有使其吸收或发射特定波长的光的尺寸和组成。 纳米晶体可以包括允许与各种基质材料(包括聚合物)混合的配体,使得最小部分的光被基质散射。 本发明的基质也可用于折射率匹配应用。 在其它实施例中,将半导体纳米晶体嵌入在基质内以形成纳米晶体密度梯度,从而产生有效的折射率梯度。 本发明的基质也可以用作光学器件上的滤光片和抗反射涂层以及下变换层。 还提供了用于生产包含半导体纳米晶体的基质的方法。 还描述了具有高量子效率,小尺寸和/或窄尺寸分布的纳米结构,以及生产具有II-VI族壳的磷化铟纳米结构和核 - 壳纳米结构的方法。

    Method of cell culture and method of treatment comprising a vEPO protein variant
    14.
    发明授权
    Method of cell culture and method of treatment comprising a vEPO protein variant 有权
    包含vEPO蛋白质变体的细胞培养方法和治疗方法

    公开(公告)号:US08895303B2

    公开(公告)日:2014-11-25

    申请号:US12514773

    申请日:2007-11-12

    Abstract: In one aspect the present invention is concerned with a method of cell culture, comprising the steps of (i) obtaining a stem or progenitor cell sample, (ii) culturing the stem or progenitor cell sample in media and under closed conditions appropriate to cause proliferation or differentiation of the stem or progenitor cells, wherein the media comprises a vEPO protein variant, (iii) purifying the stem or progenitor cells ex vivo. The invention relates to a method of increasing the number and survival of stem and progenitor cells in vitro and in vivo using a vEPO protein variant. The invention also relates to improved differentiation of stem and progenitor cells in vitro and in vivo using a vEPO protein variant.

    Abstract translation: 一方面,本发明涉及细胞培养的方法,其包括以下步骤:(i)获得干细胞或祖细胞样品,(ii)培养干细胞或祖细胞样品在培养基中并在适于引起扩散的封闭条件下 或分化干细胞或祖细胞,其中培养基包含vEPO蛋白质变体,(iii)离体纯化干细胞或祖细胞。 本发明涉及使用vEPO蛋白质变体在体外和体内增加干细胞和祖细胞的数量和存活率的方法。 本发明还涉及使用vEPO蛋白质变体在体外和体内改进干细胞和祖细胞的分化。

    Methods for optimizing thin film formation with reactive gases
    17.
    发明授权
    Methods for optimizing thin film formation with reactive gases 失效
    用反应气体优化薄膜形成的方法

    公开(公告)号:US07572740B2

    公开(公告)日:2009-08-11

    申请号:US12060528

    申请日:2008-04-01

    Abstract: A method for producing a Group IV semiconductor thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber, wherein the chamber further has a chamber pressure. The method further includes depositing a nanoparticle ink on the substrate, the nanoparticle ink including set of Group IV semiconductor nanoparticles and a solvent, wherein each nanoparticle of the set of Group IV semiconductor nanoparticles includes a nanoparticle surface, wherein a layer of Group IV semiconductor nanoparticles is formed. The method also includes striking a hydrogen plasma; and heating the layer of Group IV semiconductor nanoparticles to a fabrication temperature of between about 300° C. and about 1350° C., and between about 1 nanosecond and about 10 minutes; wherein the Group IV semiconductor thin film is formed.

    Abstract translation: 公开了一种用于在腔室中制造IV族半导体薄膜的方法。 该方法包括将衬底定位在腔室中,其中腔室还具有腔室压力。 该方法还包括在衬底上沉积纳米颗粒油墨,所述纳米颗粒油墨包括IV族半导体纳米颗粒和溶剂组,其中该组IV半导体纳米颗粒的每个纳米颗粒包括纳米颗粒表面,其中第IV族半导体纳米颗粒 形成了。 该方法还包括冲击氢等离子体; 以及将所述IV族半导体纳米颗粒层加热至约300℃至约1350℃,约1纳秒至约10分钟之间的制备温度; 其中形成IV族半导体薄膜。

Patent Agency Ranking