Abstract:
A method for forming patterns of organic polymer materials. The method can be used to form a layer with two patterned organic polymer materials. The photoresist and solvents used in the photoresist deposition and removal steps do not substantially affect the organic polymer materials.
Abstract:
Present invention relates to a novel pharmaceutical composition containing an active ingredient(s) which is retained in the stomach or upper part of gastrointestinal tract for controlled delivery of medicament for improved local treatment, and/or better absorption from upper parts of gastrointestinal tract for effective therapeutic results. Present invention also provides a method for preparation of the said dosage form preferably in the form of a bilayer tablet, in which one layer constitutes for spatial control and the other being for temporal control.
Abstract:
A monolithic semiconductor optical detector is formed on a substrate having a plurality of substantially parallel trenches etched therein. The trenches are further formed as a plurality of alternating N-type and P-type trench regions separated by pillar regions of the substrate which operate as an I region between the N and P trench regions. First and second contacts are formed on the surface of the substrate and interconnect the N-type trench regions and the P-type trench regions, respectively. Preferably, the trenches are etched with a depth comparable to an optical extinction length of optical radiation to which the detector is responsive.
Abstract:
A method of forming a semiconductor structure, includes steps of growing an oxide layer on a substrate to form a first wafer, separately forming a metal film on an oxidized substrate to form a second wafer, attaching the first and second wafers, performing a heat cycle for the first and second wafers to form a bond between the first and second wafers, and detaching a portion of the first wafer from the second wafer. Thus, a device, such as a back-plane for a semiconductor device, formed by the method includes an oxidized substrate, a metal film formed on the oxidized substrate forming a back-gate, a back-gate oxide formed on the back-gate, and a silicon layer formed on the back-gate oxide.
Abstract:
A device for generating radiant energy comprising a first electrode, a second electrode spaced apart from said first electrode, a material disposed between and in electrical communication with first and second electrodes, which emits radiant energy upon activation. This material is a rare earth metal oxide or a rare earth metal halide.
Abstract:
A floating gate is inserted into the gate stack of an EEPROM cell. For an N channel EEPROM device, the floating gate is composed of a material having a conduction band edge (or fermi energy in the case of a metal or composite that includes a metal) at least one and preferably several kT electron volts below the conduction band edge of the channel region. The floating gate material thus has a larger electron affinity than the material of the channel region. This allows the insulator separating the floating gate and the channel to be made suitable thin (less than 100 angstroms) to reduce the writing voltage and to increase the number of write cycles that can be done without failure, without having charge stored on the floating gate tunnel back out to the channel region during read operations. For a P channel EEPROM device, the floating gate is composed of a material having a valence band edge (or fermi energy in the case of a metal or a composite that includes a metal) at least one and preferably several kT (eV) above the valence band edge of the channel region.
Abstract:
Unpinned epitaxial metal-oxide-compound semiconductor structures are disclosed and a method of fabricating such structures is described. Epitaxial layers of compound semiconductor are grown by MBE which result in the formation of a smooth surface having a stabilized reconstruction. An elemental semiconductor layer is deposited epitaxially in-situ with the compound semiconductor layer which unpins the surface Fermi level. A layer of insulator material is then deposited on the elemental semiconductor layer by PECVD. In one embodiment, the compound semiconductor is GaAs and the elemental semiconductor is Si. The insulator material is a layer of high quality SiO.sub.2. A metal gate is deposited on the SiO.sub.2 layer to form an MOS device. The epitaxial GaAs layer has a density of states which permits the interface Fermi level to be moved through the entire forbidden energy gap. In another embodiment, the SiO.sub.2 deposition completely consumes the interface Si layer so that the resulting MOS device comprises SiO.sub.2 directly overlying the GaAs layer.
Abstract:
In a semiconductor device, a contact with low resistance to a III-V compound semiconductor substrate was fabricated using refractory materials and small amounts of indium as the contact material. The contact material was formed by depositing Mo, Ge and W with small amounts of In onto doped GaAs wafers. The contact resistance less than 1.0 ohm millimeter was obtained after annealing at 800.degree. C. and the resistance did not increase after subsequent prolonged annealing at 400.degree. C.
Abstract:
In one embodiment there is set forth a method comprising providing a semiconductor structure having an electrode, wherein the providing includes providing a phase transition material region and wherein the method further includes imparting energy to the phase transition material region to induce a phase transition of the phase transition material region. By inducing a phase transition of the phase transition material region, a state of the semiconductor structure can be changed. There is further set forth an apparatus comprising a structure including an electrode and a phase transition material region, wherein the apparatus is operative for imparting energy to the phase transition material region to induce a phase transition of the phase transition material region without the phase transition of the phase transition material region being dependent on electron transport through the phase transition material region.
Abstract:
Mechanical devices having bistable positions are utilized to form switches and memory devices. The devices are actuatable to different positions and may be coupled to a transistor device in various configurations to provide memory devices. Actuation mechanisms include electrostatic methods and heat. In one form, the mechanical device forms a gate for a field effect transistor. In a further form, the device may be a switch that may be coupled to the transistor in various manners to affect its electrical characteristics when on and off. The memory switch in one embodiment comprises side walls formed with tensile or compressive films. A cross point switch is formed from a plurality of intersecting conductive rows and columns of conductors. Actuatable switches are positioned between each intersection of the rows and columns such that each intersection is independently addressable.