Abstract:
An array substrate and a manufacturing method thereof, and a display device are provided. The manufacturing method comprises: forming a first gate metal pattern on a base substrate; forming a gate insulating layer, a first active layer pattern and a source-drain metal pattern on the base substrate on which the first gate metal pattern is formed; forming a first protective layer pattern and a through hole pattern on the base substrate on which the source-drain metal pattern is formed; and forming a second active layer pattern and a pixel electrode pattern on the base substrate on which the first protective layer pattern is formed. Embodiments of the present disclosure solve problems of poor display performance and high cost of the array substrate and achieve effects of improving the display performance and reducing the cost.
Abstract:
The present application discloses a thin film transistor including a base substrate; an active layer on the base substrate having a channel region, a source electrode contact region, and a drain electrode contact region; an etch stop layer on a side of the channel region distal to the base substrate covering the channel region; a source electrode on a side of the source electrode contact region distal to the base substrate; and a drain electrode on a side of the drain electrode contact region distal to the base substrate. A thickness of the active layer in the source electrode contact region and the drain electrode contact region is substantially the same as a combined thickness of the active layer in the channel region and the etch stop layer.
Abstract:
An optical detector includes a stacked structure, an active layer, a gate insulating layer, and a gate electrode. The stacked structure includes a first electrode, a photoelectric conversion layer, a second electrode, a first insulating layer, and a third electrode. The active layer is electrically coupled to one of the first electrode or the second electrode, and electrically coupled to the third electrode. The gate insulating layer is arranged on the active layer. The gate electrode is arranged on the gate insulating layer.
Abstract:
An oxide thin-film transistor, an array substrate and methods for manufacturing the same, and a display device are provided. The method for manufacturing the oxide thin-film transistor includes: forming a pattern of an oxide semi-conductor layer above a base substrate; and illuminating, by a light source, two opposite boundary regions of the pattern of the oxide semi-conductor layer, where the illuminated two opposite boundary regions of the pattern of the oxide semi-conductor layer form ohmic contact layers and a region of the pattern of the oxide semi-conductor layer that is not illuminated forms a semi-conductor active layer; forming a source electrode and a drain electrode which are connected to the semi-conductor active layer via the ohmic contact layers respectively.
Abstract:
A thin film transistor, a manufacturing method for an array substrate, the array substrate, and a display device are provided. The manufacturing method for a thin film transistor includes: forming a semiconductor layer; performing a modification treatment on a surface layer of a region of the semiconductor layer, so that the region of the semiconductor layer has a portion in a first direction perpendicular to the semiconductor layer formed as an etching blocking layer, portions of the semiconductor layer on both sides of the etching blocking layer in a second direction parallel to a surface of the semiconductor layer remaining unmodified; and forming a source electrode and a drain electrode on the semiconductor layer, the source electrode and the drain electrode being formed on both sides of a center line of the region perpendicular to the second direction, and spaced from each other in the second direction.
Abstract:
The present disclosure relates to the field of display technology and provides a method for manufacturing a TFT, the TFT, an array substrate including the TFT, and a display device. The method includes steps of forming a pattern of a gate electrode on 5 a base substrate, forming a gate insulation layer on the base substrate, and forming patterns of a source electrode and a drain electrode arranged above the gate insulation layer. The method further includes forming an antioxidation metal protection layer on a surface or surfaces of the gate electrode, the source electrode and/or the drain electrode.
Abstract:
A thin film transistor and a fabrication method thereof, and a display device are provided. The thin film transistor comprises an active layer, wherein, a target oxide is formed at a portion of the active layer where an oxygen content is higher than oxygen contents of other portions of the active layer, and a carrier mobility of the target oxide is greater than that of other portions of the active layer.
Abstract:
The present disclosure relates to the technical field of flexible substrate processing, and discloses a flexible substrate attaching method. The flexible substrate attaching method comprises the steps of: pre-fixing a flexible substrate on a carrier substrate with a first fixation structure; forming a thin film on the flexible substrate, and forming a pattern of the thin film via a patterning process; the pattern of the thin film contacting at least a part of the flexible substrate and at least a part of the carrier substrate simultaneously to play the function of consolidating the flexible substrate onto the carrier substrate. In this flexible substrate attaching method, a flexible substrate can be fixed on a carrier substrate in good effect and the flexible panel can be easily detached after the manufacture is completed. The present disclosure further provides a flexible substrate attachment structure.
Abstract:
A thin film transistor, a manufacturing method thereof, an array substrate and an electronic device arc provided. The thin film transistor includes an active layer including multiple oxide layers which includes a channel layer, a transition layer and a first barrier layer, the channel layer is an layer with a highest carrier mobility, the channel layer is a crystalline or amorphous oxide layer, the transition layer is in direct contact with the channel layer, the first barrier layer is an outermost oxide layer, the first barrier layer and the transition layer are both crystalline oxide layers; a crystallization degree of the first barrier layer and a crystallization degree of the transition layer are greater than a crystallization degree of the channel layer, and a band gap of the first barrier layer and a band gap of the transition layer are larger than a band gap of the channel layer.
Abstract:
A displaying base plate and a manufacturing method thereof, and a displaying device. The displaying base plate includes a substrate, and a first electrode layer disposed on one side of the substrate, wherein the first electrode layer includes a first electrode pattern; a first planarization layer disposed on one side of the first electrode layer that is away from the substrate, wherein the first planarization layer is provided with a through hole, and the through hole penetrates the first planarization layer, to expose the first electrode pattern; and a second electrode layer, a second planarization layer and a third electrode layer that are disposed in stack on one side of the first planarization layer that is away from the substrate, wherein the second electrode layer is disposed closer to the substrate, the second electrode layer is connected to the first electrode pattern and the third electrode layer.