Abstract:
A method of recovering selective catalytic reduction catalysts relates to metal-Zeolite based catalysts. A selective catalytic reduction catalyst service event where a metal-Zeolite based selective catalytic reduction catalyst of an exhaust aftertreatment system may perform below a threshold level of performance is determined. The selective catalytic reduction catalyst then exposed to a recovery fluid selected to facilitate movement of metal ions.
Abstract:
System and methods for reducing secondary emissions in an exhaust stream from an internal combustion engine are disclosed. The systems and methods include a filtration device positioned downstream from an SCR catalyst of an aftertreatment system disposed in the exhaust system. The filtration device can also be used for particulate filter diagnostics and for treatment of ammonia slip.
Abstract:
A system includes an internal combustion ignition engine with an exhaust gas flow, a particulate filter in the exhaust gas flow, a NOx reduction catalyst in the exhaust gas flow downstream of the particulate filter, a first oxygen sensor coupled to the exhaust gas flow downstream of the NOx reduction catalyst, and a second oxygen sensor coupled to the exhaust gas flow between the particulate filter and the NOx reduction catalyst. A controller includes an exhaust conditions module that interprets a first oxygen signal from the first oxygen sensor and a second oxygen signal from the second oxygen sensor and a combustion control module that commands a high engine-out air-fuel ratio when the first oxygen signal indicates a low oxygen content and commands a low engine-out air-fuel ratio when the first oxygen signal indicates a high oxygen content.
Abstract:
System, apparatus, and methods are disclosed for treating a reduction catalyst that has been exposed to an amount of sulfur. The treating of the reduction catalyst includes providing a fluid stream at a position upstream of the reduction catalyst. The fluid stream includes a temperature and a reductant amount, and the reductant amount includes an amount of urea, ammonia, or hydrocarbons.
Abstract:
A technique is described including receiving a hydrocarbon stream, and heating the hydrocarbon stream with an exhaust steam from an internal combustion engine. This technique may include reacting the hydrocarbon stream catalytically to produce hydrogen and a modified hydrocarbon stream having a lower saturation state than the hydrocarbon stream, recovering energy from the hydrogen stream, and/or providing the modified hydrocarbon stream to a fuel supply for the internal combustion engine.
Abstract:
An example method includes determining that a selective catalytic reduction (SCR) component having a zeolite-based catalyst is contaminated with platinum (Pt). The method further includes elevating the temperature of the SCR component to at least 600° C. in response to the determining the catalytic component is contaminated with Pt, and maintaining the elevated temperature of the catalytic component for a predetermined time period thereby restoring reduction activity of the catalyst.
Abstract:
A method includes providing a zeolite material including a plurality of active sites. The plurality of active sites are bound to a plurality of hydrogen ions. The method includes exchanging at least a portion of the plurality of hydrogen ions with a plurality of copper ions, thereby forming a first amount of Z2Cu active sites that include copper (Cu2+) ions bound to the zeolite material and a first amount of ZCuOH active sites bound to copper hydroxide ions bound to the zeolite material. The method includes heating the zeolite material to a heat treatment temperature for a predefined time period to transform the zeolite material into a heat treated zeolite material. The heat treated zeolite material includes a second amount of Z2Cu active sites greater than the first amount of Z2Cu active sites and a second amount of ZCuOH active sites less than the first amount of ZCuOH active sites.
Abstract:
An engine system includes an oxygen capture system including at least one adsorbent material, an internal combustion engine fluidly coupled to the oxygen capture system, an exhaust processing system fluidly coupled to the internal combustion engine, the exhaust processing system including a catalytic system, at least one cooler and at least one gas/liquid separator, and a carbon capture system fluidly coupled to the exhaust processing system and the internal combustion engine, the carbon capture system including a carbon dioxide condenser and a carbon dioxide storage.
Abstract:
A system is provided for performing a power estimation process for an electric vehicle using a controller. The controller estimates an inner state of an energy storage supply of the electric vehicle. The inner state represents a state-of-charge (SOC) and/or a state-of-health (SOH) of the energy storage supply. The controller also estimates an SOC value and/or an SOH value of the energy storage supply based on at least one of: a present current level, a present voltage level, a present temperature, and time-based information. The controller further estimates a bounded SOC value based on the SOC value, a first upper bound, a the first lower bound, and/or estimates a bounded SOH value based on the SOH value, a second upper bound, and a second lower bound. The controller then controls an electrification process of the electric vehicle based on the bounded SOC and/or SOH values.