摘要:
The invention includes methods of forming layers comprising epitaxial silicon. In one implementation, an opening is formed within a first material received over a monocrystalline material. Opposing sidewalls of the opening are lined with a second material, with monocrystalline material being exposed at a base of the second material-lined opening. A silicon-comprising layer is epitaxially grown from the exposed monocrystalline material within the second material-lined opening. At least a portion of the second material lining is in situ removed. Other aspects and implementations are contemplated.
摘要:
The invention includes a method of depositing a noble metal. A substrate is provided. The substrate has a first region and a second region. The first and second regions are exposed to a mixture comprising a precursor of a noble metal and an oxidant. During the exposure, a layer containing the noble metal is selectively deposited onto the first region relative to the second region. In particular applications, the first region can comprise borophosphosilicate glass, and the second region can comprise either aluminum oxide or doped non-oxidized silicon. The invention also includes capacitor constructions and methods of forming capacitor constructions.
摘要:
An electrical contact includes a non-conductive spacer surrounding conductive plug material along the full height of the contact. The spacer inhibits oxide and other diffusion through the contact. In the illustrated embodiment, the contact includes metals or metal oxides which are resistant to oxidation, and additional conductive barrier layers. The contact is particularly useful in integrated circuits which include high dielectric constant materials.
摘要:
The invention includes a method of depositing a noble metal. A substrate is provided. The substrate has a first region and a second region. The first and second regions are exposed to a mixture comprising a precursor of a noble metal and an oxidant. During the exposure, a layer containing the noble metal is selectively deposited onto the first region relative to the second region. In particular applications, the first region can comprise borophosphosilicate glass, and the second region can comprise either aluminum oxide or doped non-oxidized silicon. The invention also includes capacitor constructions and methods of forming capacitor constructions.
摘要:
An electrical contact includes a non-conductive spacer surrounding conductive plug material along the full height of the contact. The spacer inhibits oxide and other diffusion through the contact. In the illustrated embodiment, the contact includes metals or metal oxides which are resistant to oxidation, and additional conductive barrier layers. The contact is particularly useful in integrated circuits which include high dielectric constant materials.
摘要:
Methods of forming a capacitor are disclosed. The methods may comprise the steps of forming a substrate assembly and forming a first electrode on the substrate assembly. The first electrode may be formed to include at least one non-smooth surface and may be formed from a material selected from the group consisting of transition metals, conductive oxides, alloys thereof, and combinations thereof. The methods may also comprise the step of forming a dielectric on the first electrode and an uppermost surface of the substrate assembly, and forming a second electrode on the dielectric. The second electrode may be formed to include at least one non-smooth surface. Also, the dielectric and the second electrode may be formed only within the first electrode.
摘要:
Structures having an electrode formed from a transition metal or a conductive metal oxide are disclosed. The structures may comprise a first electrode made of a material selected from the group consisting of transition metals, conductive metal-oxides, alloys thereof, and combinations thereof The first electrode may comprise a first non-smooth surface, and the first non-smooth surface may comprise a concave hemispherical grain. The structures may also comprise a dielectric in contact with the first electrode and a surface of a substrate assembly.
摘要:
The invention includes ALD-type methods in which two or more different precursors are provided within a chamber at different and substantially non-overlapping times relative to one another to form a material, and the material is thereafter exposed to one or more reactants to change a composition of the material. In particular aspects, the precursors utilized to form the material are metal-containing precursors, and the reactant utilized to change the composition of the material comprises oxygen, silicon, and/or nitrogen.
摘要:
A method of forming a capacitor includes forming a conductive metal first electrode layer over a substrate, with the conductive metal being oxidizable to a higher degree at and above an oxidation temperature as compared to any degree of oxidation below the oxidation temperature. At least one oxygen containing vapor precursor is fed to the conductive metal first electrode layer below the oxidation temperature under conditions effective to form a first portion oxide material of a capacitor dielectric region over the conductive metal first electrode layer. At least one vapor precursor is fed over the first portion at a temperature above the oxidation temperature effective to form a second portion oxide material of the capacitor dielectric region over the first portion. The oxide material of the first portion and the oxide material of the second portion are common in chemical composition. A conductive second electrode layer is formed over the second portion oxide material of the capacitor dielectric region.
摘要:
The invention includes ALD-type methods in which two or more different precursors are provided within a chamber at different and substantially non-overlapping times relative to one another to form a material, and the material is thereafter exposed to one or more reactants to change a composition of the material. In particular aspects, the precursors utilized to form the material are metal-containing precursors, and the reactant utilized to change the composition of the material comprises oxygen, silicon, and/or nitrogen.