摘要:
A method for forming a high aspect ration (HAR>4:1) borderless contact hole is described. The method forms a contact/via hole in the silicon oxide layer by performing an etching process with an etchant, C4F8/C2F6,/Ar/CO or C4F8/Ar/CO, on an etcher. The etcher includes a ring, a roof, a chiller and a chamber. The etchant used in the etching process is controlled under conditions including a C4F8 flow of about 10 to 20 sccm, a CO flow of about 1 to 100 sccm, and an Ar flow of about 100 to 500 sccm. The flow of C2F6 is about 0.5 to 1.5 times that of C4F8. The conditions of the etcher include a roof temperature of about 150 to 300° C., a chiller temperature of about −20 to 20° C., a wall temperature of about 150 to 400° C., a ring temperature of about 150 to 400° C., and a pressure within the chamber of about 4 to 50 mtorr. By controlling the chamber pressure and the deposition rate of the polymer molecules, a properly profiled contact hole is obtained.
摘要翻译:描述了形成高纵横比(HAR> 4:1)无边界接触孔的方法。 该方法通过在蚀刻剂上用蚀刻剂C 4 F 8 / C 2 F 6,/ Ar / CO或C 4 F 8 / Ar / CO执行蚀刻处理来形成氧化硅层中的接触/通孔。 蚀刻器包括环,屋顶,冷却器和室。 在蚀刻工艺中使用的蚀刻剂在约10至20sccm的C 4 F 8流量,约1至100sccm的CO流量和约100至500sccm的Ar流量的条件下进行控制。 C2F6的流量约为C4F8的0.5〜1.5倍。 蚀刻器的条件包括约150至300℃的屋顶温度,约-20至20℃的冷却器温度,约150至400℃的壁温度,约150至400℃的环境温度 400℃,室内的压力为约4至50毫托。 通过控制室压力和聚合物分子的沉积速率,获得适当的异型接触孔。
摘要:
A simplified method is disclosed for etching low k organic dielectric film. A substrate is provided with a hardmask layer and low k organic dielectric layer formed thereon in which hardmask layer is on the dielectric layer. A layer of photoresist is formed on the hardmask layer and imaged with a pattern by exposure through a dark field mask. As a key step, the pattern is transferred into the hardmask layer by dry etching and then the photoresist is stripped in-situ. Then, the interconnect is formed by using dry etching the low k organic dielectric layer using the hardmask layer as a mask, and readying it for the next semiconductor process.
摘要:
A method for forming a contact hole in a silicon oxide layer formed over a silicon nitride layer and a substrate performs an etching process with an etchant, C4F8/Ar or C4F8/C2F6/Ar, on an inductively coupled plasma etcher. The inductively coupled plasma etcher contains a chamber, a ring, and a roof. The etchant used in the etching process is controlled by conditions that include a C4F8 flow of about 10 to 20 sccm, a CO flow of less than about 100 sccm, and an Ar flow of about 50 to 500 sccm. In the meantime, the conditions of the inductively coupled plasma etcher include a roof temperature of about 150 to 300 ° C., a ring temperature of about 150 to 400 ° C., and a pressure within the chamber of about 4 to 50 mtorr. By performing a plasma etching process under the foregoing conditions, a properly profiled contact hole is obtained.
摘要:
The present invention relates to a method of forming a contact hole on the semiconductor wafer. The semiconductor wafer comprises, in ascending order, a substrate, a silicon nitride layer, a silicon oxide layer, and a photo-resist layer. There is a hole in the photo-resist layer. The method comprises: (1) performing a first anisotropic etching process in a downward direction to remove the silicon oxide layer under the hole down to the surface of the silicon nitride layer to form a recess; (2) performing an in-situ plasma cleaning process to entirely remove the polymer material remaining at the bottom of the recess; (3) performing an in-situ second anisotropic etching process in a downward direction to remove the silicon nitride layer from the bottom of the recess down to the surface of the substrate to form the contact hole; (4) performing another in-situ cleaning process to entirely remove the polymer material remaining at the bottom of the contact hole.
摘要:
A fin-type field effect transistor including at least one fin-type semiconductor structure, a gate strip and a gate insulating layer is provided. The fin-type semiconductor structure is doped with a first type dopant and has a block region with a first doping concentration and a channel region with a second doping concentration. The first doping concentration is larger than the second doping concentration. The blocking region has a height. The channel region is configured above the blocking region. The gate strip is substantially perpendicular to the fin-type semiconductor structure and covers above the channel region. The gate insulating layer is disposed between the gate strip and the fin-type semiconductor structure.
摘要:
The present invention provides a method of defining polysilicon patterns. The method forms a polysilicon layer on a substrate, and a patterned mask on the polysilicon layer. Then, a first etching process is performed to remove a portion of the polysilicon layer not covered by the mask, thus forming a plurality of cavities in the polysilicon layer. A strip process is performed to strip the mask utilizing gases excluding O2. Finally, a second etching process is performed to remove a portion of the polysilicon layer, thus extending the plurality of cavities down to a surface of the substrate.
摘要:
The invention is directed towards a method for forming openings in low-k dielectric layers and a structure for forming an opening thereof. A mask layer comprising at least one metal hard mask layer and one or more hard mask layers is applied on the dielectric layer for forming the opening.
摘要:
A semiconductor structure is provided in the present invention. The semiconductor structure includes a substrate, a first material layer and a second material layer. A trench region is defined on the substrate. The trench region includes two separated first regions and a second region, wherein the second region is adjacent to and between the two first regions. The first material layer is disposed on the substrate outside the trench region. The second material layer is disposed in the second region and is level with the first material layer.
摘要:
A field effect transistor (FET) and a manufacturing method thereof are provided. The FET includes a substrate, a fin bump, an insulating layer, a charge trapping structure and a gate structure. The fin bump is disposed on the substrate. The insulating layer is disposed on the substrate and located at two sides of the fin bump. The charge trapping structure is disposed on the insulating layer and located at at least one side of the fin bump. A cross-section of the charge trapping structure is L-shaped. The gate structure covers the fin bump and the charge trapping structure.
摘要:
The present invention provides a method of forming a trench in a semiconductor substrate. First, a first patterned mask layer is formed on a semiconductor substrate. The first patterned mask layer has a first trench. Then, a material layer is formed along the first trench. Then, a second patterned mask layer is formed on the material layer to completely fill the first trench. A part of the material layer is removed when the portion of the material layer between the second patterned mask layer and the semiconductor substrate is maintained so as to form a second trench. Lastly, an etching process is performed by using the first patterned mask layer and the second patterned mask layer as a mask.