摘要:
Method of manufacturing a semiconductor chip. An array region gate stack is formed on an array region of a substrate and a periphery region gate stack is formed on a periphery region of a substrate. A first dielectric material, a charge-storing material, and a second dielectric material are deposited over the substrate. Portions of the first dielectric material, the charge-storing material, and the second dielectric material are removed to form storage structures on the array region gate stack and on the periphery region gate stack. The storage structures have a generally L-shaped cross-section. A first source/drain region is formed in the array region well. A third dielectric material and a spacer material are deposited over the substrate. Portions of the third dielectric material and the spacer material are removed to form spacers. A second source/drain region is formed in the periphery region well.
摘要:
A SONOS gate structure has an oxide structure on a substrate having gate pattern thereon. The oxide structure has a relatively thinner oxide portion on the substrate for keeping good program/erase efficiency, and a relatively thicker oxide portion on sidewalls of the gate pattern for inhibiting gate disturb. Trapping dielectric spacers are on formed the oxide structure laterally adjacent to said sidewalls of said gate pattern respectively.
摘要:
A wafer has a trench, a STI layer formed in the trench, an HfO2-containing gate dielectric covering the wafer and the STI layer, a gate electrode formed on the HfO2-containing gate dielectric, and at least a spacer formed beside the gate electrode. The wafer is preheated and a bromine-rich gas plasma is provided to remove portions of the HfO2-containing gate dielectric.
摘要:
A semiconductor structure and a method for forming the semiconductor structure are provided. The method for forming a semiconductor structure of the present invention may include the following steps. First, a substrate is provided, wherein a gate is formed over the substrate, and a plurality of offspacers are formed over a sidewall of the gate. Then, a source/drain trench is formed in the substrate at two sides of the gate respectively. Next, an outermost offspacer of the offspacers is removed to expose a flat surface on a surface of the substrate. Thereafter, the source/drain trenches are filled to form a source/drain region. Then, a lightly doped drain (LDD) region is formed in a portion of the substrate under the flat surface.
摘要:
A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A semiconductor substrate having a main surface is prepared. A gate dielectric layer is formed on the main surface. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A silicon nitride spacer is formed on the liner. The main surface is then ion implanted using the gate electrode and the silicon nitride spacer as an implantation mask, thereby forming a source/drain region of the MOS transistor device in the main surface. The silicon nitride spacer is removed. A silicon nitride cap layer that borders the liner is deposited. The silicon nitride cap layer has a specific stress status.
摘要:
A method of correcting a mask layout is provided. The mask layout includes a plurality of element patterns. An inspection program is executed to classify the element patterns of the mask layout into a plurality of element pattern types according to a pattern density of the element patterns. Following this, each of the element pattern types is corrected so as to prevent a plasma micro-loading effect.
摘要:
A structure of a Trapezoid-Triple-Gate Field Effect Transistor (FET) includes a plurality of trapezoid pillars being transversely formed on an crystalline substrate or Silicon-On-Insulator (SOI) wafer. The trapezoid pillars can juxtapose with both ends connected each other. Each trapezoid pillar has a source, a channel region, and a drain aligned in longitudinal direction and a gate latitudinally superposes the channel region of the trapezoid pillar. The triple gate field effect transistor comprises a dielectric layer formed between the channel region and the conductive gate structure.
摘要:
A photolithography process with multiple exposures is provided. A photomask is placed and aligned above a wafer having a photoresist formed thereon at a predetermined distance. Multiple exposures are sequentially performed on the photoresist through the photomask. Each of the multiple exposures is provided with a respective illuminating setting that is optimized for one duty ratio of the photomask. Thereby, an optimum through-pitch performance for pattern transfer from the photomask unto the photoresist is obtained. Then, a development is performed on the photoresist.
摘要:
An optical proximity correction method for rectifying pattern on photoresist. Line pattern of integrated circuit is divided into L-shape regions or T-shaped regions. The L-shaped or T-shaped regions are further dissected into rectangular patches. Area of each rectangular patch is suitably reduced and reproduced onto a photomask. The photomask is used to form a corrected photoresist pattern.
摘要:
A SONOS gate structure has an oxide structure on a substrate having gate pattern thereon. The oxide structure has a relatively thinner oxide portion on the substrate for keeping good program/erase efficiency, and a relatively thicker oxide portion on sidewalls of the gate pattern for inhibiting gate disturb. Trapping dielectric spacers are on formed the oxide structure laterally adjacent to said sidewalls of said gate pattern respectively.