Abstract:
A cylinder head arrangement for an internal combustion engine is provided. The cylinder head includes an integrated exhaust manifold having first and second exhaust passages to collect exhaust gas from respective cylinders to direct the exhaust gas to respective outlets of the cylinder head. The cylinder head includes a flange where the first and second outlets exit the cylinder head for connection with a turbocharger.
Abstract:
A system and method of inducing an operational response change in an operating direct-injection internal combustion engine is provided such that the engine includes a cylinder into which liquid fuel injection is directly performed. The method starts by operating the direct-injection engine using a start of injection (SOI) protocol. At some point during operation, it is determined that a change is desired for a first parameter of engine operation that is at least partially a function of a charge provided to the cylinder (such as the torque output). In response an operational response in the engine is induced by altering the SOI protocol via a first SOI alteration that alters the volumetric efficiency of the cylinder and changes the first parameter.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary EGR cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the amount of recirculated exhaust gas in a charge flow in response to EGR fraction deviation conditions.
Abstract:
Systems and methods for thermal management of a direct injection propane fuel system are disclosed that include control a temperature of the fuel tank at or below a desired operating temperature to avoid venting of fuel to atmosphere.
Abstract:
A system includes an internal combustion engine having a number of cylinders. At least one of the cylinders is a primary EGR cylinder that solely provides EGR flow during at least some operating conditions. Operation of the primary EGR cylinder is controlled separately from the other cylinders to reduce internal residuals in the primary EGR cylinder.
Abstract:
A system includes an internal combustion engine having a number of cylinders, with at least one of the cylinder(s) being a primary EGR cylinder that is dedicated to provided EGR flow during at least some operating conditions. A controller is structured to control combustion conditions in the cylinders in response to one or more operating conditions associated with the engine.
Abstract:
Systems and methods for fuelling a plurality of cylinders of an internal combustion engine are disclosed. The system includes a dedicated exhaust gas recirculation system for recirculating exhaust gas flow from at least one dedicated cylinder of an engine into an intake system prior to combustion. The system further includes a fueling system to provide a first flow of fuel to each of the plurality of cylinders and a second flow of fuel to each of the dedicated cylinders that is in addition to the first flow of fuel.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary EGR cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the amount of recirculated exhaust gas in a charge flow in response to EGR fraction deviation conditions.
Abstract:
A bi-fuel internal combustion engine system includes a first fuel system, a second fuel system, and a bi-fuel internal combustion engine. The bi-fuel internal combustion engine is configured to selectively consume one of a first fuel received from the first fuel system and a second fuel received from the second fuel system. The bi-fuel internal combustion engine includes a camshaft and a valve assembly. The camshaft has a cam. The valve assembly is positioned adjacent the camshaft and configured to interface with the cam. The valve assembly is selectively repositionable between a first position and a second position. The bi-fuel internal combustion engine has a first dynamic compression ratio when the valve assembly is in the first position and a second dynamic compression ratio when the valve assembly is in the second position. The second dynamic compression ratio is greater than the first dynamic compression ratio.
Abstract:
Systems, devices, and method are disclosed for differentially cooling an internal combustion engine. A cooling system includes a first cooling circuit configured to lower a temperature of a cooling fluid to a first temperature where the first cooling circuit is configured to dispense a first portion of the cooling fluid to cylinder walls and non-cylinder or non-combustion surfaces of the engine. The cooling system also includes a second cooling circuit configured to lower the temperature of a remaining or second portion of the cooling fluid to a second temperature that is lower than the first temperature where the second cooling circuit is configured to dispense the remaining portion of the cooling fluid to cylinder or combustion surfaces within one or more cylinders of the internal combustion engine.