Abstract:
A thermally conductive sheet has cut surfaces with low surface roughness and hence shows reduced thermal resistance at the interfaces, and high thermal conductivity in the thickness direction. Thus, the thermally conductive sheet can be interposed between any of various heat sources and a radiation member. The process for producing the thermally conductive sheet includes at least: an extrusion molding step in which a thermally conductive composition containing a polymer, an anisotropic thermally conductive filler, and a filler is extruded with an extruder to thereby mold an extrusion-molded product in which the anisotropic thermally conductive filler has been oriented along the extrusion direction; a curing step in which the extrusion-molded product is cured to obtain a cured object; and a slicing step in which the cured object is sliced into a given thickness with an ultrasonic cutter in the direction perpendicular to the extrusion direction.
Abstract:
A thermally conductive sheet has cut surfaces with low surface roughness and hence shows reduced thermal resistance at the interfaces, and high thermal conductivity in the thickness direction. Thus, the thermally conductive sheet can be interposed between any of various heat sources and a radiation member. The process for producing the thermally conductive sheet includes at least: an extrusion molding step in which a thermally conductive composition containing a polymer, an anisotropic thermally conductive filler, and a filler is extruded with an extruder to thereby mold an extrusion-molded product in which the anisotropic thermally conductive filler has been oriented along the extrusion direction; a curing step in which the extrusion-molded product is cured to obtain a cured object; and a slicing step in which the cured object is sliced into a given thickness with an ultrasonic cutter in the direction perpendicular to the extrusion direction.
Abstract:
A method for producing a heat transfer sheet, includes: (A1) forming a mixture including at least one of a carbon fiber and a boron nitride flake, an inorganic filler, and a binder resin into a molded body in which the at least one of the carbon fiber and the boron nitride flake is oriented in a thickness direction of the molded body; (B1) slicing the molded body into a sheet shape to obtain a molded sheet; (C1) pressing the molded sheet; and (D1), after the pressing, inserting the molded sheet between films and performing a vacuum packing of the molded sheet with the films such that an uncured component of the binder resin present inside the molded sheet is exuded to a surface of the molded sheet, which is the heat transfer sheet.
Abstract:
A thermally conductive sheet having a binder resin, a first thermally conductive filler, and a second thermally conductive filler, wherein the first thermally conductive filler and the second thermally conductive filler are dispersed in the binder resin, and the specific permittivity and the thermal conductivity are different in the thickness direction B and the surface direction A of the thermally conductive sheet. A thermally conductive sheet includes step A of preparing a resin composition for forming a thermally conductive sheet by dispersing a first thermally conductive filler and a second thermally conductive filler in a binder resin, step B of forming a molded block from the resin composition for forming a thermally conductive sheet, and step C of slicing the molded block into a sheet and obtaining a thermally conductive sheet having different relative permittivity and thermal conductivity in the thickness direction and the surface direction.
Abstract:
A thermally conductive sheet excellent in adhesiveness to an electronic component, handleability and reworkability, a method for manufacturing the same, and a method for mounting a thermally conductive sheet, the sheet includes: a sheet body formed by curing a thermally conductive resin composition containing at least a polymer matrix component and a thermally conductive filler, wherein the volume ratio of the thermally conductive filler to the polymer matrix component is 1.00 to 1.70, the thermally conductive filler contains a fibrous thermally conductive filler, and the fibrous thermally conductive filler projects from the surface of the sheet body and is coated with an uncured component of the polymer matrix component.
Abstract:
A thermally conductive sheet includes a sheet body and an adhesive layer. The sheet body is obtained by curing a thermally conductive resin composition. The thermally conductive resin composition includes a polymer matrix component and a fibrous thermally conductive filler. The adhesive layer is formed on at least one surface of the sheet body and imparts tackiness to the at least one surface of the sheet body. A volume of the adhesive layer is 0.0002 cm3 or more and 0.001 cm3 or less per 1 cm2 of the sheet body.
Abstract:
A method for producing a thermally conductive sheet, includes forming a molded body sheet having thermal conductivity and comprising a fibrous thermally conductive filler. A silicone resin film is formed by applying a silicone resin to a supporting body. At least one surface of the molded body sheet is directly affixed to a silicone resin side of the silicone resin film. The silicone resin is transferred to the at least one surface of the molded body sheet to form a silicone resin layer on the molded body sheet. The silicone resin layer is to be attached to a heat source or a heat dissipating member. The molded body sheet has a change in thermal resistance due to the transferring of the silicone resin of 0.5° C.·cm2/W or less.
Abstract:
A thermally conductive sheet excellent in adhesiveness to an electronic component, handleability and reworkability, a method for manufacturing the same, and a method for mounting a thermally conductive sheet. The sheet includes: a sheet body obtained by curing a binder resin containing at least a polymer matrix component and a fibrous thermally conductive filler, wherein the volume ratio of the fibrous thermally conductive filler to the binder resin is 0.6 or less considering the binder resin as 1, and the fibrous thermally conductive filler projects from the surface of the sheet body and is coated with an uncured component of the binder resin.
Abstract:
Disclosed is an electromagnetic wave absorbing heat conductive sheet having superior heat conductivity and electromagnetic wave absorbency. The electromagnetic wave absorbing heat conductive sheet comprises a polymer matrix component; a magnetic metal power; and a fibrous heat conductive filler oriented in one direction.
Abstract:
Provided is a method of manufacturing a heat conductive sheet with improved adhesion and heat conductivity. The method includes the steps of molding a heat conductive resin composition, which includes heat conductive fillers and a binder resin, into a predetermined shape and curing the heat conductive resin composition to obtain a molded product of the heat conductive resin composition, cutting the molded product into sheets to obtain a molded product sheet, and pressing the molded product sheet.