Abstract:
A process is described for converting at least one isomer of a dialkyl-substituted biphenyl compound, such as at least one 2,X′ dialkylbiphenyl isomer (where X′ is 2′, 3′ and/or 4′), into at least one different isomer, 3,3′, 3,4′ and/or 4,4′ dialkylbiphenyl isomer. The process comprises contacting a feed comprising the dialkyl-substituted biphenyl compound isomer with an acid catalyst under isomerization conditions.
Abstract:
A cleavage process for making phenol and/or cyclohexanone, the process comprising: (A) providing a feed comprising cyclohexylbenzene hydroperoxide; (B) contacting the feed with a catalyst under cleavage reaction conditions effective to produce a cleavage effluent comprising phenol and cyclohexanone, the catalyst having a collidine uptake of at least 20 μmol per gram of the catalyst and comprising an aluminosilicate molecular sieve of the FAU-type, an oxide binder, and a clay.
Abstract:
A process for producing an alkylated aromatic compound comprises contacting an aromatic starting material and hydrogen with a plurality of catalyst particles under hydroalkylation conditions to produce an effluent comprising the alkylated aromatic compound, the catalyst comprising a composite of a solid acid, an inorganic oxide different from the solid acid and a hydrogenation metal, wherein the distribution of the hydrogenation metal in at least 60 wt % of the catalyst particles is such that the average concentration of the hydrogenation metal in the rim portion of a given catalyst particle is Crim, the average concentration of the hydrogenation metal in the center portion of the given catalyst particle is Ccenter, where 0.2≦Crim/Ccenter
Abstract:
In a process for producing phenol and/or cyclohexanone, cyclohexylbenzene is contacted with an oxygen-containing gas to produce an oxidation effluent containing cyclohexylbenzene hydroperoxide and the cyclohexylbenzene hydroperoxide is then contacted with a cleavage catalyst to produce a cleavage effluent containing phenol and cyclohexanone. At least one of the oxidation effluent and the cleavage effluent also contains at least one by-product selected from phenylcyclohexanols and phenylcyclohexanones and the process further comprises contacting the by-product with a dehydration catalyst to convert the by-product to phenylcyclohexene and hydrogenating the phenylcyclohexene to cyclohexylbenzene. The dealkylation and hydrogenation may be conducted in a single stage.
Abstract:
Disclosed are a catalyst comprising (A) an aluminosilicate molecular sieve comprising a ferrierite phase and (B) a hydrogenation metal component, and a hydroalkylation process using the catalyst. The catalyst and the hydroalkylation process can be used in the production of phenol and/or cyclohexanone from benzene hydroalkylation.
Abstract:
The present invention provides a process for converting a feedstock comprising hydrocarbon compounds using a catalyst made by an improved method for manufacturing high quality porous crystalline MCM-56 material. One such conversion process involves production of monoalkylated aromatic compounds, particularly ethylbenzene and cumene, by the liquid or partial liquid phase alkylation of alkylatable aromatic compound, particularly benzene.
Abstract:
The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons and an alkylating agent, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in−1 (12 cm−1) in a treatment zone separate from an alkylation reaction zone under treatment conditions including a temperature of from about 30° C. to about 300° C. to form an effluent comprising said treated alkylatable aromatic compound.
Abstract:
The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons and an alkylating agent, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in−1 (12 cm−1) in a treatment zone separate from an alkylation reaction zone under treatment conditions including a temperature of from about 30° C. to about 300° C. to form an effluent comprising said treated alkylatable aromatic compound.
Abstract:
The present invention relates to hydrogenation processes including: contacting a first composition with hydrogen under hydrogenation conditions, in the presence of an eggshell hydrogenation catalyst, wherein the first composition has: (i) greater than about 50 wt % of cyclohexylbenzene, the wt % based upon the total weight of the first composition; and (ii) greater than about 0.3 wt % of cyclohexenylbenzene, the wt % based upon the total weight of the first composition; and thereby obtaining a second composition having less cyclohexenylbenzene than the first composition. Other hydrogenation processes are also described.
Abstract:
This invention relates to process for producing biphenyl esters, the process comprising: (a) contacting a feed comprising toluene, xylene or mixtures thereof with hydrogen in the presence of a hydroalkylation catalyst to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene, wherein the hydroalkylation catalyst comprises: 1) binder present at 40 wt % or less (based upon weight of final catalyst composition), 2) a hydrogenation component present at 0.2 wt % or less (based upon weight of final catalyst composition), and 3) an acidic component comprising a molecular sieve having a twelve membered (or larger) ring pore opening, channel or pocket and a largest pore dimension of 6.0 angstroms or more present at 60 wt % or more, (based upon weight of final catalyst composition); (b) dehydrogenating the hydroalkylation reaction product using a dehydrogenation catalyst to produce a dehydrogenation reaction product comprising a mixture of methyl-substituted biphenyl compounds; (c) contacting at the dehydrogenation reaction product with an oxidizing gas to convert the methyl-substituted biphenyl compounds to biphenyl carboxylic acids; and (d) reacting the biphenyl carboxylic acids with one or more C1 to C14 alcohols to produce biphenyl esters.