Abstract:
A process for making styrene is disclosed that includes providing toluene, a co-feed, and a C1 source to a reactor containing a catalyst, reacting toluene with the C1 source in the presence of the catalyst and the co-feed to form a product stream containing ethylbenzene and styrene. The co-feed can be selected from the group of water, carbon monoxide, hydrogen, and combinations thereof.
Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane to toluene, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
A catalyst containing nanosize zeolite particles supported on a support material for alkylation reactions, such as the alkylation of benzene to form ethylbenzene, and processes using such a catalyst is disclosed.
Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane to toluene, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane to toluene, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
A catalyst containing nanosize zeolite particles supported on a support material for alkylation reactions, such as the alkylation of benzene to form ethylbenzene, and processes using such a catalyst is disclosed.
Abstract:
A method for the oxidative coupling of hydrocarbons includes providing an oxidative catalyst inside a reactor and carrying out the oxidative coupling reaction under a set of reaction conditions. The reactor surfaces that contact the reactants and products do not provide a significant detrimental catalyzing effect. In an embodiment the reactor contains an inert lining or a portion of the reactor inner surface is treated to reduce the detrimental catalytic effects. In an embodiment the reactor contains a lining that includes an oxidative catalyst.
Abstract:
An alkylation catalyst having a zeolite catalyst component and a binder component providing mechanical support for the zeolite catalyst component is disclosed. The binder component is an ion-modified binder that can include metal ions selected from the group consisting of Co, Mn, Ti, Zr, V, Nb, K, Cs, Ga, B, P, Rb, Ag, Na, Cu, Mg, Fe, Mo, Ce, and combinations thereof The metal ions reduce the number of acid sites on the zeolite catalyst component. The metal ions can range from 0.1 to 50 wt % based on the total weight of the ion-modified binder. Optionally, the ion-modified binder is present in amounts ranging from 1 to 80 wt % based on the total weight of the catalyst.
Abstract:
A process for making styrene including providing toluene, a co-feed, and a C1 source to a reactor containing a catalyst having acid sites and reacting toluene with the C1 source in the presence of the catalyst and the co-feed to form a product stream containing ethylbenzene and styrene, wherein the C1 source is selected from methanol, formaldehyde, formalin, trioxane, methylformcel, paraformaldehyde, methylal, dimethyl ether, and wherein the co-feed removes at least a portion of the acid sites on the catalyst. The co-feed can be selected from the group of aniline, amines, cresol, anisol, and combinations thereof.
Abstract:
A process for making styrene is disclosed that includes reacting toluene with a C1 source and a co-feed in the presence of a catalyst in a reactor to form a first product stream comprising styrene, ethylbenzene, carbon monoxide, and hydrogen; separating the hydrogen and carbon monoxide from the first product stream to form a second stream; separating the hydrogen from the second stream to form a third stream comprising hydrogen and a fourth stream comprising carbon monoxide; wherein the fourth stream is recycled to the reactor and forms at least a portion of the co-feed.