Abstract:
Hazard detection systems according to embodiments described herein are operative to provide failsafe safety detection features and user interface features using circuit topology and power budgeting methods that minimize power consumption. The safety detection features can monitor environmental conditions (e.g., smoke, heat, humidity, carbon monoxide, carbon dioxide, radon, and other noxious gasses) in the vicinity of the hazard detection system associated and alarm occupants when an environmental condition exceeds a predetermined threshold.
Abstract:
Apparatus, systems, methods, and related computer program products for handling temperature variation with optoelectronic components of a hazard detection system are described herein. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a temperature of an environment of the hazard detection system. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a smoke condition of an environment of the hazard detection system. Optoelectronic components of the hazard detection system may be optically coupled to determine a smoke condition of an environment of the hazard detection system. Multiple optoelectronics of the hazard detection system may be operative to detect forward scatter and back scatter of one or more types of light to determine a characteristic of a hazard particle.
Abstract:
A thermostat for controlling an HVAC system in an enclosure may include a passive infrared sensor, an active infrared sensor, and an electronic display having a first mode and a second mode. The thermostat may also include one or more processors programmed to change a setpoint temperature of the thermostat to an energy-saving temperature upon detection of a non-occupancy condition for the enclosure. The processor(s) may detect the non-occupancy condition based at least in part on readings received from the passive infrared sensor. The processor(s) may also be programmed to change the electronic display from the first mode to the second mode upon detection of a person approaching the thermostat. The processor(s) may detect a person approaching the thermostat based at least in part on readings received from the active infrared sensor.
Abstract:
Hazard detection systems according to embodiments described herein are operative to provide failsafe safety detection features and user interface features using circuit topology and power budgeting methods that minimize power consumption. The safety detection features can monitor environmental conditions (e.g., smoke, heat, humidity, carbon monoxide, carbon dioxide, radon, and other noxious gasses) in the vicinity of the hazard detection system associated and alarm occupants when an environmental condition exceeds a predetermined threshold.
Abstract:
Systems for ensuring an audible alarm circuit sounds at a minimum magnitude of loudness are provided. Different circuitry embodiments discussed herein are each capable of assisting the audible alarm circuit in maintaining a minimum loudness threshold. Audible alarm circuit operation optimization can be achieved using embodiments that fall within anyone of four general categories: compensation networks, direct drive, dynamic tuning, and microphone feedback based dynamic tuning. Use of such circuitry can increase production yields by compensating for manufacturing variations of alarm components and aging characteristics of the components.
Abstract:
A thermostat includes a plurality of HVAC (heating, ventilation, and air conditioning) wire connectors for receiving a plurality of HVAC control wires corresponding to an HVAC system. The thermostat also includes a thermostat processing and control circuit operative to at least partially control the operation of the HVAC system and a powering circuit coupled to the HVAC wire connectors and configured to provide an electrical load power to the thermostat processing and control circuit. The thermostat includes circuitry and methods for maximizing efficiency of energy harvested from the HVAC system connected to the thermostat, and depending on which system is connected to the thermostat, different power schemes can be implemented in order to obtain power from the HVAC system.
Abstract:
A thermostat includes a plurality of HVAC (heating, ventilation, and air conditioning) wire connectors including a connection to at least one call relay wire. The thermostat may also include a powering circuit, including a rechargeable battery, which is configured to provide electrical power to the thermostat by power stealing from a selected call relay wire. The power stealing may comprise an active power stealing mode, in which power is taken from the same selected call relay wire that is used to call for an HVAC function, and an inactive power stealing mode in which, in which no active call is being made. The powering circuit may be configured to substantially suspend (or at least reduce the level of) power stealing for at least a first time period following each transition of the thermostat from between operating states.
Abstract:
Apparatus, systems, methods, and related computer program products for handling temperature variation with optoelectronic components of a hazard detection system are described herein. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a temperature of an environment of the hazard detection system. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a smoke condition of an environment of the hazard detection system. Optoelectronic components of the hazard detection system may be optically coupled to determine a smoke condition of an environment of the hazard detection system. Multiple optoelectronics of the hazard detection system may be operative to detect forward scatter and back scatter of one or more types of light to determine a characteristic of a hazard particle.
Abstract:
Apparatus, systems, methods, and related computer program products for handling temperature variation with optoelectronic components of a hazard detection system are described herein. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a temperature of an environment of the hazard detection system. A power characteristic of an optoelectronic component of the hazard detection system may be used determine a smoke condition of an environment of the hazard detection system. Optoelectronic components of the hazard detection system may be optically coupled to determine a smoke condition of an environment of the hazard detection system. Multiple optoelectronics of the hazard detection system may be operative to detect forward scatter and back scatter of one or more types of light to determine a characteristic of a hazard particle.
Abstract:
Apparatus, systems, methods, and related computer program products for handling temperature variation with optoelectronic components of a hazard detection system are described herein. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a temperature of an environment of the hazard detection system. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a smoke condition of an environment of the hazard detection system. Optoelectronic components of the hazard detection system may be optically coupled to determine a smoke condition of an environment of the hazard detection system. Multiple optoelectronics of the hazard detection system may be operative to detect forward scatter and back scatter of one or more types of light to determine a characteristic of a hazard particle.