Abstract:
A roadgraph may include a graph network of information such as roads, lanes, intersections, and the connections between these features. The roadgraph may also include one or more zones associated with particular rules. The zones may include locations where driving is typically challenging such as merges, construction zones, or other obstacles. In one example, the rules may require an autonomous vehicle to alert a driver that the vehicle is approaching a zone. The vehicle may thus require a driver to take control of steering, acceleration, deceleration, etc. In another example, the zones may be designated by a driver and may be broadcast to other nearby vehicles, for example using a radio link or other network such that other vehicles may be able to observer the same rule at the same location or at least notify the other vehicle's drivers that another driver felt the location was unsafe for autonomous driving.
Abstract:
Methods and systems are disclosed for cross-validating a second sensor with a first sensor. Cross-validating the second sensor may include obtaining sensor readings from the first sensor and comparing the sensor readings from the first sensor with sensor readings obtained from the second sensor. In particular, the comparison of the sensor readings may include comparing state information about a vehicle detected by the first sensor and the second sensor. In addition, comparing the sensor readings may include obtaining a first image from the first sensor, obtaining a second image from the second sensor, and then comparing various characteristics of the images. One characteristic that may be compared are object labels applied to the vehicle detected by the first and second sensor. The first and second sensors may be different types of sensors.
Abstract:
Systems and methods are provided for controlling a vehicle. A safe envelope driving pattern is determined to control the vehicle in an autonomous mode. User identification data and sensor data are received from one or more sensors associated with the vehicle. A driver-specific driving pattern is determined based on the received sensor data and the user identification data. Operation of the vehicle is controlled in the autonomous mode based on the identification of the user in the driver's seat, the safe envelope driving pattern, and the user-specific driving pattern.
Abstract:
Aspects of the disclosure relate generally to notifying a pedestrian of the intent of a self-driving vehicle. For example, the vehicle may include sensors which detect an object such as a pedestrian attempting or about to cross the roadway in front of the vehicle. The vehicle's computer may then determine the correct way to respond to the pedestrian. For example, the computer may determine that the vehicle should stop or slow down, yield, or stop if it is safe to do so. The vehicle may then provide a notification to the pedestrian of what the vehicle is going to or is currently doing. For example, the vehicle may include a physical signaling device, an electronic sign or lights, a speaker for providing audible notifications, etc.
Abstract:
A roadgraph may include a graph network of information such as roads, lanes, intersections, and the connections between these features. The roadgraph may also include one or more zones associated with particular rules. The zones may include locations where driving is typically challenging such as merges, construction zones, or other obstacles. In one example, the rules may require an autonomous vehicle to alert a driver that the vehicle is approaching a zone. The vehicle may thus require a driver to take control of steering, acceleration, deceleration, etc. In another example, the zones may be designated by a driver and may be broadcast to other nearby vehicles, for example using a radio link or other network such that other vehicles may be able to observer the same rule at the same location or at least notify the other vehicle's drivers that another driver felt the location was unsafe for autonomous driving.
Abstract:
Autonomous vehicles use various computing systems to transport passengers from one location to another. A control computer sends messages to the various systems of the vehicle in order to maneuver the vehicle safely to the destination. The control computer may display information on an electronic display in order to allow the passenger to understand what actions the vehicle may be taking in the immediate future. Various icons and images may be used to provide this information to the passenger.
Abstract:
An autonomous vehicle may access portions of a map to maneuver a roadway. The map may be split into one or more levels that represent different regions in space. For example, an overpass may be represented by one level while the road below the overpass may be on a separate level. A vehicle traveling on a particular level may use map data that is associated with that level. Furthermore, if the vehicle travels through a warp zone, it may transition from the current level to a destination level and thus begin to use map data associated with the destination level.
Abstract:
Aspects of the disclosure relate generally to generating roadgraphs for use by autonomous vehicles. A computer may receive input defining aspects of a roadway including an intersection with another roadway, one or more traffic control features, and one or more locations at which a vehicle is required to observe at least one traffic signal before entering the intersection. A user may identify the intersection, for example, by tracing a perimeter around the intersection. In response, for each particular location of the one or more locations, the computer may identifying a route through the intersection from the particular location and determine, based on the boundary of the intersection and the particular location, a set of the one or more traffic control features must be observed by the vehicle before entering the intersection. This information may then be used to generate a roadgraph.
Abstract:
A passenger in an automated vehicle may relinquish control of the vehicle to a control computer when the control computer has determined that it may maneuver the vehicle safely to a destination. The passenger may relinquish or regain control of the vehicle by applying different degrees of pressure, for example, on a steering wheel of the vehicle. The control computer may convey status information to a passenger in a variety of ways including by illuminating elements of the vehicle. The color and location of the illumination may indicate the status of the control computer, for example, whether the control computer has been armed, is ready to take control of the vehicle, or is currently controlling the vehicle.
Abstract:
Autonomous vehicles use various computing systems to transport passengers from one location to another. A control computer sends messages to the various systems of the vehicle in order to maneuver the vehicle safely to the destination. The control computer may display information on an electronic display in order to allow the passenger to understand what actions the vehicle may be taking in the immediate future. Various icons and images may be used to provide this information to the passenger.