Abstract:
Aspects of the disclosure relate to an autonomous vehicle that may detect other nearby vehicles and designate stationary vehicles as being in one of a short-term stationary state or a long-term stationary state. This determination may be made based on various indicia, including visible indicia displayed by the detected vehicle and traffic control factors relating to the detected vehicle. For example, the autonomous vehicle may identify a detected vehicle as being in a long-term stationary state based on detection of hazard lights being displayed by the detected vehicle, as well as the absence of brake lights being displayed by the detected vehicle. The autonomous vehicle may then base its control strategy on the stationary state of the detected vehicle.
Abstract:
A system and method is provided for detecting and responding to emergency vehicles. In one aspect, one or more computing devices may identify a set of light sources from an image based at least in part on one or more templates, and may filter the set of light sources in order to identify one or more light sources corresponding to a potential emergency vehicle. Moreover, the one or more computing devices may determine whether any of the one or more light sources is flashing and whether any of the one or more light sources is associated with a particular type of the potential emergency vehicle. Further, the one or more computing devices may maneuver a vehicle based on the determination to yield in response to at least one of the one or more flashing light sources and the particular type of the emergency vehicle.
Abstract:
Aspects of the disclosure relate to identifying construction objects. As an example, an image captured by a camera associated with a vehicle as the vehicle is driven along a roadway may be received. This image may be converted into a first channel corresponding to an average brightness contribution from red, blue and green channels of the image. The image may also be converted into a second channel corresponding to a contribution of a color from the red and the green channels of the image. A template may then be used to identify a region of the image corresponding to a potential construction object from the first channel and the second channel.
Abstract:
Methods and systems for real-time road flare detection using templates and appropriate color spaces are described. A computing device of a vehicle may be configured to receive an image of an environment of the vehicle. The computing device may be configured to identify a given pixels in the plurality of pixels having one or more of: (i) a red color value greater than a green color value, and (ii) the red color value greater than a blue color value. Further, the computing device may be configured to make a comparison between one or more characteristics of a shape of an object represented by the given pixels in the image and corresponding one or more characteristics of a predetermined shape of a road flare; and determine a likelihood that the object represents the road flare.
Abstract:
An autonomous vehicle may be configured to receive, using a computer system, a plurality of remission signals from a portion of a lane of travel in an environment in response to at least one sensor of the vehicle sensing the portion of the lane of travel. A given remission signal of the plurality of remission signals may include a remission value indicative of a level of reflectiveness for the portion of the lane of travel. The vehicle may also be configured to compare the plurality of remission signals to a known remission value indicative of a level of reflectiveness for a lane marker in the lane of travel. Based on the comparison, the vehicle may additionally be configured to determine whether the portion of the lane of travel in the environment is indicative of a presence of the lane marker.
Abstract:
Aspects of the disclosure relate to detecting and responding to objects in a vehicle's environment. For example, an object may be identified in a vehicle's environment, the object having a heading and location. A set of possible actions for the object may be generated using map information describing the vehicle's environment and the heading and location of the object. A set of possible future trajectories of the object may be generated based on the set of possible actions. A likelihood value of each trajectory of the set of possible future trajectories may be determined based on contextual information including a status of the detected object. A final future trajectory is determined based on the determined likelihood value for each trajectory of the set of possible future trajectories. The vehicle is then maneuvered in order to avoid the final future trajectory and the object.
Abstract:
Aspects of the disclosure relate generally to detecting the edges of lane lines. Specifically, a vehicle driving on a roadway may use a laser to collect data for the roadway. A computer may process the data received from the laser in order to extract the points which potentially reside on two lane lines defining a lane. The extracted points are used by the computer to determine a model of a left lane edge and a right lane edge for the lane. The model may be used to estimate a centerline between the two lane lines. All or some of the model and centerline estimates, may be used to maneuver a vehicle in real time and also to update or generate map information used to maneuver vehicles.
Abstract:
Aspects of the invention relate generally to autonomous vehicles. Specifically, the features described may be used alone or in combination in order to improve the safety, use, driver experience, and performance of these vehicles.
Abstract:
Methods and systems for object and ground segmentation from a sparse one-dimensional range data are described. A computing device may be configured to receive scan data representing points in an environment of a vehicle. The computing device may be configured to determine if a test point in the scan data is likely to be an obstacle or ground by comparing the point to other points in the scan data to determine if specific constraints are violated. Points that do not pass these tests are likely to be above the ground, and therefore likely belong to obstacles.
Abstract:
Aspects of the invention relate generally to autonomous vehicles. Specifically, the features described may be used alone or in combination in order to improve the safety, use, driver experience, and performance of these vehicles.