Abstract:
The disclosure provides a charged particle detector including a scintillator that emits light with stable intensity and obtains high light emission intensity regardless of an energy of an incident electron. The disclosure provides the charged particle detector including: a first light-emitting part (21) in which a layer containing Ga1-x-yAlxInyN (where 0≤x
Abstract:
Increasing the volume or weight of zirconia which is a diffusion and supply source, to extend the life of a field-emission type electron source causes a problem that the diffusion and supply source itself or a tungsten needle is easily subjected to damage. As another problem, although it is considered to form the diffusion and supply source using a thin film to avoid the above-described problem, it is difficult to stably obtain practical life exceeding 8,000 hours. It has been found that practical life exceeding 8,000 hours is stably obtained by providing a field-emission type electron source that has no chips or cracks in a diffusion and supply source and that can extend life with a little bit of an increase in the amount of the diffusion and supply source.
Abstract:
Provided is a charged particle beam device including a charged particle optical column that irradiates a specimen with a primary charged particle beam, and a specimen base rotating unit that is capable of rotating the specimen base in a state of an angle formed by a surface of the specimen base and an optical axis of the primary charged particle beam being inclined to a non-perpendicular angle, in which the specimen base is configured to include a detecting element that detects a charged particle scattered or transmitted inside the specimen, and transmitted charged particle images of the specimen corresponding to each angle is acquired by irradiating the specimen in a state of the specimen base rotating unit being rotated at a plurality of different angles.
Abstract:
The purpose of the present invention is to provide a charged particle gun using merely an electrostatic lens, said charged particle gun being relatively small and having less aberration, and to provide a field emission-type charged particle gun having high luminance even with a high current. This charged particle gun has: a charged particle source; an acceleration electrode that accelerates charged particles emitted from the charged particle source; a control electrode, which is disposed further toward the charged particle source side than the acceleration electrode, and which has a larger aperture diameter than the aperture diameter of the acceleration electrode; and a control unit that controls, on the basis of a potential applied to the acceleration electrode, a potential to be applied to the control electrode.