Abstract:
Techniques and mechanisms for determining an operational mode of a voltage regulator. In an embodiment, an integrated circuit (IC) die is coupled to receive power from a voltage regulator (VR) via a power delivery network (PDN) which comprises circuitry in or on a substrate, such as that of a printed circuit board. The IC die receives from the substrate information indicating a characteristic of a parasitic impedance at the substrate. Based on the information, a controller unit at the IC die selects one of multiple VR modes which each correspond to a respective one of different parasitic impedance characteristics. The controller then signals the VR to provide the selected mode. In an embodiment one of the VR modes corresponds to a relatively high impedance, and also corresponds to a relatively stable sensitivity function in a frequency range above a control bandwidth.
Abstract:
Embodiments herein relate to a feedback loop in a digital voltage regulator for controlling an output voltage. To avoid instability at light current loads, a gain of the loop is reduced as a power gate code indicates a reduced number of branches in set of current sources are enabled. In an example implementation, the code is classified into one range of a number of ranges, and the gain is set based on the one range. The gain can decrease each time the code enters a lower range, as indicated by the code crossing a threshold or predetermined value. For example, the gain can decrease by half each time the code enters a lower range.
Abstract:
An apparatus is provided which comprises: a first voltage regulator; a second voltage regulator; and a switch to selectively couple the first voltage regulator to the second voltage regulator, such that a first output node of the first voltage regulator is temporarily coupled to a second output node of the second voltage regulator via the switch.
Abstract:
Described is an apparatus which comprises: a power supply node; a plurality of inductors inductively coupled with one another, wherein at least one inductor of the plurality is electrically coupled to the power supply node; a plurality of loads; and a plurality of capacitors coupled to the plurality of inductors, respectively, and also coupled to the plurality of loads, respectively.
Abstract:
Technologies for low-leakage and low series resistance on-chip capacitors are disclosed. In the illustrative embodiment, each electrode of a capacitor is formed from two metal layers and vias between the metal layers. A high-k dielectric layer is between the metal layers. The electrodes are displaced relative to each other on the plane defined by the high-k dielectric layer. As a result, electric field lines of the capacitor are parallel to the high-k dielectric layer. The electrodes can be displaced from each other by more than the thickness of the high-k dielectric layer, reducing the leakage current through the high-k dielectric layer as compared to a capacitor with field lines perpendicular to the high-k dielectric layer. Such a capacitor may be used to provide power to circuits in a low-power state with little leakage current and/or may be used to absorb radiofrequency (RF) interference.
Abstract:
Some embodiments include apparatus and methods using a package substrate and a die coupled to the package substrate. The package substrate includes conductive contacts, conductive paths coupled to the conductive contacts, and a resistor embedded in the package substrate. The die includes buffer circuits and a calibration module coupled to the buffer circuits and the resistor. The buffer circuits include output nodes coupled to the conductive contacts through the conductive paths. The calibration module is configured to perform a calibration operation to adjust resistances of the buffer circuits based on a value of a voltage at a terminal of the resistor during the calibration operation.
Abstract:
Embodiments include apparatuses, methods, and systems with cross-coupling noise reduction in circuits. In embodiments, a circuit may include a common inductor and a negatively coupled inductor pair connected or coupled between the first inductor and a first load and a second load. The negatively coupled inductor pair may include a first and a second inductor. The first inductor may be connected or coupled to the first load and the second inductor may be connected or coupled to the second load to reduce cross-coupling noise between the first load and the second load. Examples of passive structures that may be used to implement the circuit are also described. Other embodiments may also be described and claimed.
Abstract:
An apparatus, system, and method for improved power consumption and/or noise reduction in a differential input/output (I/O) buffer are provided. A circuit can include a differential signal buffer and encoding scheme quantifying and selection circuitry. The encoding scheme quantifying and selection circuitry can be configured to generate a selection code indicating a selected encoding scheme of the encoding schemes based on respective signals indicating whether each respective encoding scheme of encoding schemes has a net positive power consumption reduction in differential signals. The encoding scheme quantifying and selection circuitry can be configured to provide the selection code to an encoder.
Abstract:
Techniques and mechanisms for determining an operational mode of a voltage regulator. In an embodiment, an integrated circuit (IC) die is coupled to receive power from a voltage regulator (VR) via a power delivery network (PDN) which comprises circuitry in or on a substrate, such as that of a printed circuit board. The IC die receives from the substrate information indicating a characteristic of a parasitic impedance at the substrate. Based on the information, a controller unit at the IC die selects one of multiple VR modes which each correspond to a respective one of different parasitic impedance characteristics. The controller then signals the VR to provide the selected mode. In an embodiment one of the VR modes corresponds to a relatively high impedance, and also corresponds to a relatively stable sensitivity function in a frequency range above a control bandwidth.
Abstract:
An apparatus is provided which comprises: a first voltage regulator; a second voltage regulator; and a switch to selectively couple the first voltage regulator to the second voltage regulator, such that a first output node of the first voltage regulator is temporarily coupled to a second output node of the second voltage regulator via the switch.