Abstract:
Systems, devices, and techniques for V2X communications using multiple radio access technologies (RATs) are described herein. A communication associated with one or more of the multiple RATs may be received at a device. The device may include a transceiver interface with multiple connections to communicate with multiple transceiver chains. The multiple transceiver chains can be configured to support multiple RATs. Additionally, the multiple transceiver chains may be controlled via the multiple connections of the transceiver interface to coordinate the multiple RATs to complete the communication.
Abstract:
Embodiments of wireless antenna array systems to achieve three-dimensional beam coverage are described herein. Other embodiments may be described and claimed.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
A communication device for multi-radio access technology (RAT) communications includes one or more processors and a plurality of transceivers. Each transceiver is configured to operate in at least one RAT of a plurality of RATs. The processors are configured to establish connection with a second communication device using a first transceiver of the plurality of transceivers and a first RAT of the plurality of RATs. A first data stream associated with a communication link connected to the second communication device and a third communication device is receive via a convergence function at the second communication device. The communication link uses a second RAT of the plurality of RATs. A code sequence is applied to a second data stream to generate an encoded second data stream, which is transmitted to the third communication device via a second communication link established based on information received via the first data stream.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed to detect attacks in V2X networks. An example apparatus includes a challenge handler to (a) transmit a first challenge packet to a first vehicle to request a transmission of a first response, (b) instruct a second challenge packet to be transmitted to a second vehicle to request a transmission of a second response, (c) increment a first counter when the first response is not obtained, (d) increment a second counter when the second response is not obtained, and (e) after repeating (a)-(d), determine that the first and second vehicles are phantom vehicles associated with an attacker with a half-duplex radio when at least one of the first or second counters satisfy a threshold, and a network interface to instruct a third vehicle associated with the V2X network to ignore future messages from the phantom vehicles based on the determination.
Abstract:
A lens antenna system is disclosed. The lens antenna system comprises a hybrid focal source antenna circuit configured to generate a source antenna beam for integration with different lens structures. In some embodiments, the hybrid focal source antenna circuit comprises a set of antenna elements coupled to one another. In some embodiments, the set of antenna elements comprises a first antenna element configured to be excited in a first spherical mode; and a second antenna element configured to be excited in a second, different, spherical mode. In some embodiments, the first spherical mode and the second spherical mode are co-polarized. In some embodiments, the lens antenna system further comprises a lens configured to shape the source antenna beam associated with the hybrid focal source antenna circuit, in order to provide an output antenna beam.
Abstract:
Systems, devices, and techniques for V2X communications using multiple radio access technologies (RATs) are described herein. A communication associated with one or more of the multiple RATs may be received at a device. The device may include a transceiver interface with multiple connections to communicate with multiple transceiver chains. The multiple transceiver chains can be configured to support multiple RATs. Additionally, the multiple transceiver chains may be controlled via the multiple connections of the transceiver interface to coordinate the multiple RATs to complete the communication.
Abstract:
Systems and methods to generate maps or models of structures are disclosed. Features of the structure to be mapped may be determined for the purposes of generating the map or model based at least in part on images associated with the structure, sensor measurements associated with the structure, and phase data of communications signals that interact with the structure. The mapping or modeling processes may be performed at a mapping server that receives images, sensor data, and/or communications signal phase information from one or more user devices, such as mobile devices. The mapping servers may perform a simultaneous localization and mapping (SLAM) process and may enhance the generated maps using sensor and/or communications phase data to map one or more hidden features of the structure.
Abstract:
Embodiments of wireless antenna array systems to achieve three-dimensional beam coverage are described herein. Other embodiments may be described and claimed.