Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Apparatuses and systems for millimeter-wave antennas are described. An apparatus comprises a board assembly, and a first and second antenna disposed within the board assembly. A third antenna can comprise a semiconductor antenna attached to the board assembly. A parasitic layer can be gap-coupled to the first and second antenna. The first and second antenna can include a rectangular patch antenna and an annular ring antenna. Other aspects are described.
Abstract:
Apparatuses and systems for millimeter-wave antennas are described. An apparatus comprises a board assembly, and a first and second antenna disposed within the board assembly. A third antenna can comprise a semiconductor antenna attached to the board assembly. A parasitic layer can be gap-coupled to the first and second antenna. The first and second antenna can include a rectangular patch antenna and an annular ring antenna. Other aspects are described.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
An embodiment of the present invention provides a configuration of a cross-coupled common-source differential amplifier stage which enables performing a gain step down (attenuation) while maintaining good step flatness over a large relative bandwidth.
Abstract:
An inductive switch comprises an inductor that has a primary metallic winding having a boundary configured in shape of a figure eight, such as in two loops, and a plurality of secondary metallic windings arranged within the boundary of the primary metallic winding. The inductive switch includes a plurality of switches, each switch arranged in series with a respective one of the plurality of secondary metallic windings. An equal number of the secondary windings is arranged within each loop. A tunable inductor comprises at least one main metallic loop and at least one secondary metallic loop, wherein the at least one secondary metallic loop comprises a switch that is arranged to configure the at least one secondary metallic loop into at least one shorted metallic loop or at least one closed metallic loop. The at least one shorted loop is floating.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
An inductive switch comprises an inductor that has a primary metallic winding having a boundary configured in shape of a figure eight, such as in two loops, and a plurality of secondary metallic windings arranged within the boundary of the primary metallic winding. The inductive switch includes a plurality of switches, each switch arranged in series with a respective one of the plurality of secondary metallic windings. An equal number of the secondary windings is arranged within each loop. A tunable inductor comprises at least one main metallic loop and at least one secondary metallic loop, wherein the at least one secondary metallic loop comprises a switch that is arranged to configure the at least one secondary metallic loop into at least one shorted metallic loop or at least one closed metallic loop. The at least one shorted loop is floating.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.