摘要:
A system for forming a spinal prosthesis in situ within an intervertebral space located between first and second adjacent vertebrae includes at least one mold having at least one internal compartment adapted to receive at least one flowable biomaterial. The system also includes a retaining member adapted to secure the mold between the first and second vertebrae, the retaining member including first and second portions adapted to be engaged with first and second surfaces of the first and second vertebrae, respectively. The retaining member also includes an intermediate body operatively coupling the first portion to the second portion, the intermediate body adapted to be positioned in or adjacent to the intervertebral space. A biomaterial delivery apparatus is in fluid communication with the mold at a pressure sufficient for the mold to engage with the retaining member. The spinal prosthesis selectively position the first vertebrae relative to the second vertebrae.
摘要:
A ramp-shaped intervertebral implant is disclosed. The implant has a body having a first end, a second end, a top surface and a bottom surface. At least one of the top and bottom surfaces is tapered and converges towards the second end of the body. An opening extends through the body and has one end opening onto the top surface of the implant and the other end opening onto the bottom surface of the implant. The implant can be formed from the diaphysis or metaphysis of a long bone, wherein the intramedullary canal of the long bone defines the opening. Alternately, the implant can be made from any biocompatible material having the requisite strength requirement.
摘要:
A bone fastener for stabilizing bone fragments includes a single or multiple components coupleable with one another and displaceable to a locked position of the bone fastener.
摘要:
A bone fastener for stabilizing bone fragments includes a single or multiple components coupleable with one another and displaceable to a locked position of the bone fastener.
摘要:
An assembly for the in situ formation of a prosthesis in an intervertebral disc space between adjacent vertebrae of a patient. At least one retention structure is located in the intervertebral disc space. A distal end of at least one lumen is located proximate the at least one retention structure. One or more in situ curable biomaterials are delivered to the intervertebral disc space through the first lumen and into engagement with the retention structure. The retention structure serves to retain at least a portion of the biomaterial in the intervertebral disc space by surface tension, adhesion, mechanical capture, friction, viscosity, and/or a variety of other mechanisms. The at least partially cured biomaterial and the at least one retention structure cooperate to comprise the prosthesis.
摘要:
An interference screw suitable for surgical use is provided. The interference screw is constructed from bone and includes an elongated body having an outer threaded surface, a tapered insertion end and a central throughbore. Insertion tool engaging structure is formed along the walls defining the throughbore. The insertion tool engaging structure extends from the proximal end of the elongated body over a substantial portion of the length of the elongated body. The insertion tool engaging structure functions to distribute the forces required to insert the interference screw throughout the body of the interference screw to prevent fracturing of the interference screw during insertion into bone.
摘要:
A ramp-shaped intervertebral implant is disclosed. The implant has a body having a first end, a second end, a top surface and a bottom surface. At least one of the top and bottom surfaces is tapered and converges towards the second end of the body. An opening extends through the body and has one end opening onto the top surface of the implant and the other end opening onto the bottom surface of the implant. The implant can be formed from the diaphysis or metaphysis of a long bone, wherein the intramedullary canal of the long bone defines the opening. Alternately, the implant can be made from any biocompatible material having the requisite strength requirement.
摘要:
An assembly for the in situ formation of a prosthesis in an intervertebral disc space between adjacent vertebrae of a patient. At least one retention structure is located in the intervertebral disc space. A distal end of at least one lumen is located proximate the at least one retention structure. One or more in situ curable biomaterials are delivered to the intervertebral disc space through the first lumen and into engagement with the retention structure. The retention structure serves to retain at least a portion of the biomaterial in the intervertebral disc space by surface tension, adhesion, mechanical capture, friction, viscosity, and/or a variety of other mechanisms. The at least partially cured biomaterial and the at least one retention structure cooperate to comprise the prosthesis.
摘要:
Intervertebral implant system for intervertebral implantation, are disclosed. An intervertebral implant system according to the present disclosure includes a frame having a peripheral wall defining a space therein, and a settable material introducible into the space of the frame. The settable material is a biocompatible load bearing material including and not limited to bone, composites, polymers of bone growth material, collagen, and insoluble collagen derivatives. The settable material is injectable into the space defined by the frame. The settable material may have an initial fluid condition wherein the fluid settable material cures to a hardened condition.
摘要:
A bone fastener for stabilizing bone fragments includes a single or multiple components coupleable with one another and displaceable to a locked position of the bone fastener.