Abstract:
Predictive modeling based focus error prediction method and system are disclosed. The method includes obtaining wafer geometry measurements of a plurality of training wafers and grouping the plurality of training wafers to provide at least one training group based on relative homogeneity of wafer geometry measurements among the plurality of training wafers. For each particular training group of the at least one training group, a predictive model is develop utilizing non-linear predictive modeling. The predictive model establishes correlations between wafer geometry parameters and focus error measurements obtained for each wafer within that particular training group, and the predictive model can be utilized to provide focus error prediction for an incoming wafer belonging to that particular training group.
Abstract:
Systems and methods to detect, quantify, and control process-induced asymmetric signatures using patterned wafer geometry measurements are disclosed. The system may include a geometry measurement tool configured to obtain a first set of wafer geometry measurements of the wafer prior to the wafer undergoing a fabrication process and to obtain a second set of wafer geometry measurements of the wafer after the fabrication process. The system may also include a processor in communication with the geometry measurement tool. The processor may be configured to: calculate a geometry-change map based on the first set of wafer geometry measurements and the second set of wafer geometry measurements; analyze the geometry-change map to detect an asymmetric component induced to wafer geometry by the fabrication process; and estimate an asymmetric overlay error induced by the fabrication process based on the asymmetric component detected in wafer geometry.
Abstract:
Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.
Abstract:
Systems and methods for predicting and controlling pattern quality data (e.g., critical dimension and/or pattern defectivity) in patterned wafers using patterned wafer geometry (PWG) measurements are disclosed. Correlations between PWG measurements and pattern quality data measurements may be established, and the established correlations may be utilized to provide pattern quality data predictions for a given wafer based on geometry measurements obtained for the give wafer. The predictions produced may be provided to a lithography tool, which may utilize the predictions to correct focus and/or title errors that may occur during the lithography process.
Abstract:
Systems and methods for improving results of wafer higher order shape (HOS) characterization and wafer classification are disclosed. The systems and methods in accordance with the present disclosure are based on localized shapes. A wafer map is partitioned into a plurality of measurement sites to improve the completeness of wafer shape representation. Various site based HOS metric values may be calculated for wafer characterization and/or classification purposes, and may also be utilized as control input for a downstream application. In addition, polar grid partitioning schemes are provided. Such polar grid partitioning schemes may be utilized to partition a wafer surface into measurement sites having uniform site areas while providing good wafer edge region coverage.
Abstract:
Prediction based systems and methods for optimizing wafer chucking and lithography control are disclosed. Distortions predicted to occur when a wafer is chucked by a chucking device are calculated and are utilized to control chucking parameters of the chucking device. Chucking parameters may include chucking pressures and chucking sequences. In addition, predicted distortions may also be utilized to facilitate application of anticipatory corrections. Controlling chucking parameters and/or applying anticipatory corrections help reducing or minimizing overlay errors.
Abstract:
Systems and methods for improving results of wafer higher order shape (HOS) characterization and wafer classification are disclosed. The systems and methods in accordance with the present disclosure are based on localized shapes. A wafer map is partitioned into a plurality of measurement sites to improve the completeness of wafer shape representation. Various site based HOS metric values may be calculated for wafer characterization and/or classification purposes, and may also be utilized as control input for a downstream application. In addition, polar grid partitioning schemes are provided. Such polar grid partitioning schemes may be utilized to partition a wafer surface into measurement sites having uniform site areas while providing good wafer edge region coverage.
Abstract:
Methods and systems enabling ultra-high resolution topography measurements of patterned wafers are disclosed. Measurements obtained utilizing the ultra-high resolution metrology may be utilized to improve wafer metrology measurement accuracies. Additionally, measurements obtained utilizing the ultra-high resolution metrology may also be utilized to provide feedback and/or calibration control to improve fabrication and design of wafers.
Abstract:
A method of providing high accuracy inspection or metrology in a bright-field differential interference contrast (BF-DIC) system is described. This method can include creating first and second beams from a first light beam. The first and second beams have round cross-sections, and form first partially overlapping scanning spots radially displaced on a substrate. Third and fourth beams are created from the first light beam or a second light beam. The third and fourth beams have elliptical cross-sections, and form second partially overlapping scanning spots tangentially displaced on the substrate. At least one portion of the substrate can be scanned using the first and second partially overlapping scanning spots as the substrate is rotated. Radial and tangential slopes can be determined using measurements obtained from the scanning using the first and second partially overlapping scanning spots. These slopes can be used to determine wafer shape or any localized topography feature.
Abstract:
Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.