Abstract:
Strontium ruthenium oxide provides an effective interface between a ruthenium conductor and a strontium titanium oxide dielectric. Formation of the strontium ruthenium oxide includes the use of atomic layer deposition to form strontium oxide and subsequent annealing of the strontium oxide to form the strontium ruthenium oxide. A first atomic layer deposition of strontium oxide is preformed using water as an oxygen source, followed by a subsequent atomic layer deposition of strontium oxide using ozone as an oxygen source.
Abstract:
A method of acknowledged communication in a network includes transmitting a message to at least one node of the network, wherein the message is transmitted in each of a plurality of broadcast rounds that overlap one another according to a predetermined broadcast schedule, receiving the message by the at least one node, and transmitting an acknowledgement of the message from the at least one node, wherein the acknowledgement is transmitted in each of a plurality of collection rounds that overlap one another according to a predetermined collection schedule.
Abstract:
A method for transmitting data from a sender node to a receiver node in a wireless network including (a) sampling a main network frequency and at least one backup frequency, (b) transmitting a message on the main network frequency without using a multiple access protocol, (c) transmitting the message on the main network frequency, using the multiple access protocol exchange, if an acknowledgement is not received, (d) transmitting the message on at least one backup frequency, using a multiple access protocol, if the main network frequency is busy after (c), (e) repeating (c) and (d) for a predefined number of time slots, until an acknowledgement is received, (f) transmitting the message on each backup frequency, using the multiple access protocol, until an acknowledgment is received, and (g) performing an exponential backoff and subsequent transmission of the message if an acknowledgement is still not received after (a) through (f).
Abstract:
A zinc/air battery includes a plurality zinc/air battery cells and an arrangement for exposing the plurality of zinc/air battery cells to air wherein the exposing arrangement opens the plurality of zinc/air battery cells in a serial manner such that only one cell is operative at a time.
Abstract:
Methods and devices are disclosed, such as those involving forming a charge trap for, e.g., a memory device, which can include flash memory cells. A substrate is exposed to temporally-separated pulses of a titanium source material, a strontium source material, and an oxygen source material capable of forming an oxide with the titanium source material and the strontium source material to form the charge trapping layer on the substrate.
Abstract:
Atomic layer deposition methods as described herein can be advantageously used to form a metal-containing layer on a substrate. For example, certain methods as described herein can form a strontium titanate layer that has low carbon content (e.g., low strontium carbonate content), which can result in layer with a high dielectric constant.
Abstract:
A method of reducing an energy consumption of a wireless network, the method including periodically entering a sleep mode by a receiver node, broadcasting a signal simultaneously across a wide band frequency range, upon waking up from the sleep mode, listening by the receiver node to only a first narrow part of the wide band frequency range, the receiver node subsequently either returning to sleep if a signal strength of the broadcasted signal is less than a predefined signal strength threshold, or staying awake for an additional period of time if the signal strength of the broadcasted signal is greater than the predefined signal strength threshold.
Abstract:
A method and system to synchronize a first device and a second device includes generating a first tone by the first device, the first tone one of including an identity of the second device and generated at a predefined time, receiving the first tone by the second device, setting a clock of the second device based on the received first time, and sending an acknowledgment by the second device to the first device.
Abstract:
A method for transmitting data from a sender node from among at least one sender node to a receiver node in a wireless network, the method including (a) sampling, by the receiver node, in each time slot, a main network frequency and at least one backup frequency, (b) transmitting, by the sender node, a message on the main network frequency in a first time slot, without using a multiple access protocol, (c) transmitting, by the sender node, the message on the main network frequency in a next time slot, using the multiple access protocol exchange, if an acknowledgement of the message is not received from the receiver node, (d) transmitting, by the sender node, the message on at least one backup frequency in the next time slot, using a multiple access protocol, if the main network frequency is busy after performing step (c), (e) repeating steps (c) and (d) for a predefined number of time slots, unless or until an acknowledgement is received from the receiver node, (f) transmitting, by the sender node, the message on each backup frequency, using the multiple access protocol, unless or until an acknowledgment is received from the receiver node, and (g) performing an exponential backoff and subsequent transmission of the message, by the sender node, if an acknowledgement is still not received from the receiver node after performing steps (a) through (f)
Abstract:
A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.