Abstract:
Provided is a method and a system for detecting avian influenza virus. More particularly, the method and a system for detecting avian influenza virus based on cell lines, which are capable of identifying avian influenza virus using infection pattern information for the cell lines, which is obtained by patterning a difference in infectivity of each subtype of avian influenza virus for some particular cells.
Abstract:
Provided is a single pulse laser apparatus. The apparatus including a resonator having a first mirror, a second mirror, a gain medium, and electro-optic modulators (EOMs) which perform each mode-locking and Q-switching, the apparatus includes a photodiode which measures laser light that oscillates from the resonator, a synchronizer which converts an electrical signal generated by measuring the laser light into a transistor-transistor logic (TTL) signal, a delay unit which sets a latency determined in order to synchronize a mode-locked pulse with a Q-switched pulse to the TTL signal, and outputs a trigger TTL signal according to the latency, and a Q-driver which inputs the trigger TTL signal to the EOM which performs Q-switching, and causes the EOM to operates.
Abstract:
Disclosed are a device for detecting a single photon available at a room temperature, which includes: a signal transmitting unit including a first electrode and a second electrode spaced apart from each other and at least one nanostructure disposed between the first electrode and the second electrode, the first electrode receiving a signal from the signal generating unit; a photonic crystal lattice structure for receiving a photon, the photonic crystal lattice structure having an optical waveguide for guiding the received photon to the first electrode, the optical waveguide being formed by a plurality of dielectric structures; and a single photon detector for detecting a photon by analyzing a signal output to the second electrode, and a method for detecting a single photon using the device.
Abstract:
The present invention relates to a mesoporous film structure having ultra-large pores therein and a method of manufacturing the same. More particularly, the present invention relates to a mesoporous film structure having ultra-large pores therein and a method of manufacturing the same, in which a mesoporous film having ultra-large pores therein is formed on supports including various materials and having various shapes under chemically mild conditions. The size of the pores in the film is capable of being adjusted, and a patterned mesoporous structure is formed on the upper surface of the support rather than throughout the entire support.
Abstract:
Provided is a field-effect transistor that can reduce noise, be produced by a simplified manufacturing method, and also have a plurality of active patterns and gate patterns designed to be combinable according to a detection purpose. The field-effect transistor includes a lower silicon layer and a buried oxide layer disposed on the lower silicon layer; an active pattern disposed on the buried oxide layer and including a channel region, a source region, and a drain region; a gate pattern disposed on the active pattern to at least partially overlap the active pattern; a source electrode disposed in direct contact with the source region on the active pattern, and a drain electrode disposed in direct contact with the drain region on the active pattern; and a gate insulating film disposed between the active pattern and the gate pattern.
Abstract:
An apparatus for sensing biomolecules includes: a storage in which a solution containing a target material is received; a sensor configured to sense the target material; and a flow controller connected between the storage and the sensor to supply the solution to the sensor, wherein the flow controller controls a solution flow to supply the solution containing the target material and the solution containing no target material in an alternating manner. According to the apparatus for sensing biomolecules, the sensing device always achieves a sensing offset, and consequently, long-term continuous measurement is enabled, leading to the maximized usage efficiency of the sensor, and the value of quantitative measurement can be obtained with high precision.
Abstract:
Disclosed herein are a method and device for sensing avian influenza viruses, using terahertz electromagnetic waves. By the method, even a trace amount of avian influenza viruses in a liquid state can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, avian influenza viruses even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto avian influenza viruses through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of an avian influenza virus of interest.
Abstract:
The invention relates to a biomarker detecting probe which is capable of early detection of a biomarker and precise quantification thereof at the same time, and a method of detecting a biomarker using the same. More particularly, it relates to a biomarker detecting probe comprising a ferritin protein, and a targeting antibody linked with a fluorescent material, superparamagnetic nano particle, and conductive particle, and a method of detecting a biomarker using the same.
Abstract:
A photoreceptor protein-based spectrophotometer may include a field-effect transistor and a photoreceptor protein on the field-effect transistor (FET), the photoreceptor protein exhibiting change in electrical properties by absorbing light and being activated. Since the spectrophotometer can convert the light absorbed by the photoreceptor protein to an electrical signal using the FET, it can mimic human vision by using human photoreceptor proteins. The spectrophotometer can measure the color, intensity, etc. of light of broad wavelength ranges as in human vision. Thus, the spectrophotometer can be applied to the development of artificial vision, etc.
Abstract:
A driving wheel of a robot moving along a wire includes an inner wheel in which a rotation axis being driven to rotate by a motor is fitted, an outer wheel formed to surround the inner wheel and seated on the wire, and a shock absorbing support to elastically connect and support the inner wheel and the outer wheel between the inner wheel and the outer wheel, and a shock being transmitted is absorbed by allowing a relative movement of the inner wheel and the outer wheel by the elastic movement of the shock absorbing support. A robot moving includes a robot body, the driving wheel, a motor to drive the driving wheel by rotating the rotation axis, a connecting arm to connect and support the driving wheel and the robot body.