Abstract:
A method for transmitting a first field and one or more second fields is described. A number of devices in a group of multiple devices to which a first OFDMA data unit is to be transmitted is selected. A block allocation that indicates respective integer numbers of different tone blocks of a WLAN communication channel to be assigned to each device in the group of multiple devices is selected. A first field is encoded to indicate both the selected number of devices in the group and the selected block allocation. One or more second fields are encoded to indicate a respective device identifier for each device in the group of multiple devices. The first field and the one or more second fields are transmitted to each device in the group of multiple devices.
Abstract:
Systems and methods are provided for performing iterative interference cancellation. The systems and methods include receiving a plurality of codewords and processing the plurality of codewords using a channel decoder to obtain a decoder output. The systems and methods further include determining, based on the decoder output, whether a stopping criterion is satisfied, and cancelling interference from the plurality of codewords based on the decoder output in response to determining that the stopping criterion is not satisfied.
Abstract:
In a method of synchronizing time domain multiplexing interference mitigation schemes of at least a first, second, and third wireless communication link within a first, second, and third network, respectively, a first set of parameters defining a first set of time intervals is determined. The first set of time intervals is utilized to schedule transmissions of the first wireless communication link to reduce interference with transmissions of the second wireless communication link. A second set of parameters defining a second set of time intervals is determined. The second set of time intervals is utilized to schedule transmissions of the first wireless communication link to reduce interference with transmissions of the third wireless communication link. The second set of parameters is determined based at least in part on at least one of the first set of parameters.
Abstract:
Systems and methods for detecting data in a received signal are provided. A signal that represents a set of data symbols is received. Possible bit values for a single data symbol of the set of data symbols are determined based on the received signal. Possible bit values for other data symbols of the set of data symbols are determined based on the possible bit values for the single data symbol. The determining of the possible bit values for the other data symbols includes determining a first value for each bit included in the other data symbols. The first value is determined by combining i) a first soft metric indicating a likelihood of a state of the bit given the received signal, and ii) a second soft metric representing an a priori probability (APP) for the bit. The first soft metric is not based on the APP for the bit.
Abstract:
A device including a first transceiver and a second transceiver. The first transceiver is configured to selectively transmit and receive first signals in a first frequency band according to a schedule. The first signals include at least cellular signals. The second transceiver is configured to selectively transmit and receive second signals in a second frequency band different from the first frequency band. The second signals include at least WiFi signals. An arbiter is configured to generate status reports indicating statuses of channels in the first frequency band and/or the second frequency band, receive the schedule as generated based on the statuses, and selectively modify the status reports based on an expected transmission and/or reception of the first signals by the first transceiver, and/or an expected transmission and/or reception of the second signals by the second transceiver.
Abstract:
Systems, methods, and other embodiments associated with signal detection with an adjustable number of interfering signals. According to one embodiment an apparatus includes an interferer counter, a detection method selector, and a signal detector. The interferer counter is configured to identify a number of active interfering signals in a received signal. The detection method selector is configured to select a signal detection method based, at least in part, on the number of active interfering signals identified by the interferer counter. In this manner, when one interfering signal is identified, a detection method having a first order is selected; and when two interfering signals are identified, the detection method having a second order is selected. The signal detector is configured to process the received signal according to the signal detection method selected by the detection method selector to detect an intended signal in the received signal.
Abstract:
Systems are provided for searching for a codeword from a plurality of codewords in a codebook for use in precoding, for example, as used in a multiple-input multiple-output (MIMO) transmission system. Dimension reduction techniques may be utilized to reduce the complexity and enhance the efficiency of the codebooks search. Null-spaces of an optimal codeword and codewords in a codebook may be computed. Distance values may be computed based on the null=spaces of the codewords. A codeword may be selected from the codebook based on a minimum distance value from the optimal codeword.
Abstract:
A method includes receiving in a mobile communication terminal signals from a group of cells that cooperate in a Coordinated Multipoint (CoMP) transmission scheme. Signaling information is received from a first cell in the group. The signaling information is indicative of a first pattern of time-frequency Resource Elements (REs) used by the first cell for transmitting reference signals, and is further indicative of a second pattern of the REs used by a second cell in the group for transmitting the reference signals. A third pattern of the REs, which are available for receiving data from the cells, is derived in the terminal from the signaling information that is indicative of the first and second patterns. The data from the cells is received in the terminal in one or more of the REs in the third pattern.
Abstract:
A first communication device receives respective beamforming training data units simultaneously transmitted to the first communication device by multiple second communication devices. The first communication device generates, based on the respective beamforming training data units received from the multiple second communication devices, respective beamforming feedback data units to be transmitted to respective ones of the multiple second communication devices. The first communication device transmits the respective feedback data units to the respective ones of the multiple second communication devices.
Abstract:
The present disclosure includes systems and techniques relating to broadcast and multicast in a wireless communication system. In some implementations, an announcement frame indicating a broadcast or multicast service period to multiple second wireless devices is transmitted by a first wireless device. The announcement frame indicates (i) an end time of the broadcast or multicast service period and (ii) an order of a sequence of frames to be directed to the multiple second wireless devices. Each of the sequence of frames is transmitted at the first wireless device using a directional antenna pattern to a respective one of the multiple second wireless devices, according to the order of the sequence of frames indicated in the announcement frame. An acknowledgement frame in response to the each of the sequence of frames is received at the first wireless device from the respective one of the multiple second wireless devices.