Abstract:
Communication apparatus includes a host interface and a network interface, which receives at least first and second redundant packet streams, each including a sequence of data packets, which include headers containing respective packet sequence numbers and data payloads of a predefined, fixed size containing respective slices of the data segment. Redundant first and second copies of each slice are transmitted in respective packets in the first and second packet streams. Packet processing circuitry receives the data packets from the network interface, maps the data packets in both the first and second packet streams, using the packet sequence numbers, to respective addresses in a buffer, and writes the data payloads to the respective addresses via the host interface while eliminating redundant data so that the buffer contains exactly one copy of each slice of the data segment, ordered in accordance with the packet sequence numbers.
Abstract:
A memory device includes a target memory, having a memory address space, and a volatile buffer memory, which is coupled to receive data written over a bus to the memory device for storage in specified addresses within the memory address space. A memory controller is configured to receive, via the bus, a flush instruction and, in response to the flush instruction, to immediately flush the data held in the buffer memory with specified addresses within the memory address space to the target memory.
Abstract:
A method for processing data includes receiving in a peripheral device, which is connected by a bus to a host processor having host resources, a notification of a sleep state of at least one of the host resources. While the at least one of the host resources is in the sleep state, when the peripheral device receives data from a data source for delivery to the host processor, the peripheral device sends a message to the data source, which causes the data source to defer conveying further data to the peripheral device until the at least one of the host resources has awakened from the sleep state.
Abstract:
Computing apparatus includes a host computer, including multiple non-uniform memory access (NUMA) nodes, including at least first and second NUMA nodes, which include first and second local memories and first and second host bus interfaces for connection to first and second peripheral component buses, respectively. A network interface controller (NIC) is to receive a definition of a memory region extending over respective first and second parts of the first and second local memories and to receive a memory mapping with respect to the memory region that is applicable to both the first and second local memories, and to apply the memory mapping in writing data to the memory region via first and second NIC bus interfaces in a sequence of direct memory access (DMA) transactions to the respective first and second parts of the first and second local memories in response to packets received through a network port.
Abstract:
A method for data transfer includes transmitting a sequence of data packets from a first computer over a network to a second computer in a single RDMA data transfer transaction. Upon receipt of a second packet in the sequence without previously having received the first packet, the second computer sends a NAK packet over the network to the first computer, indicating that the first packet was not received. A retransmission mode is selected responsively to the type of the transaction, such that when the transaction is of a first type, the first packet is retransmitted from the first computer to the second computer in response to the NAK packet without retransmitting the second packet, and when the transaction is of a second type, both the first and second packets are retransmitted from the first computer to the second computer in response to the NAK packet.
Abstract:
Apparatus for data communication includes a network interface for connection to a packet data network and a host interface for connection to a host computer, which includes a central processing unit (CPU) and a host memory. Packet processing circuitry receives, via the host interface, from a kernel running on the CPU, associations between multiple remote direct memory access (RDMA) sessions and multiple different User Datagram Protocol (UDP) 5-tuple, which are assigned respectively to the RDMA sessions, and receives from an application running on the CPU a request to send an RDMA message, using a selected group of one or more of the RDMA sessions, to a peer application over the packet data network, and in response to the request, transmits, via the network interface, one or more data packets using a UDP 5-tuple that is assigned to one of the RDMA sessions in the selected group.
Abstract:
A computing system includes at least one peripheral bus, a peripheral device connected to the at least one peripheral bus, at least one memory, and first and second system components. The first system component is (i) associated with a first address space in the at least one memory and (ii) connected to the peripheral device via the at least one peripheral bus. The second system component is (i) associated with a second address space in the at least one memory and (ii) connected to the peripheral device via the at least one peripheral bus. The first system component is arranged to cause the peripheral device to access the second address space that is associated with the second system component.
Abstract:
In one embodiment, data communication apparatus includes a network interface including one or more ports for connection to a packet data network and configured to receive content transfer requests from at least one remote device over the network, a storage sub-system to be connected to local peripheral storage devices, and including at least one peripheral interface, and a memory sub-system including a cache and RAM, and processing circuitry to manage transfer of content between the remote device(s) and the local peripheral storage devices via the peripheral interface(s) and the cache, responsively to the content transfer requests, while pacing commencement of serving of respective ones of the content transfer requests responsively to a metric of the storage sub-system so that while ones of the content transfer requests are being served, other ones of the content transfer requests pending serving are queued in at least one pending queue.
Abstract:
A network adapter includes circuitry and one or more ports. The ports connect to a communication network including multiple network elements. The circuitry accesses outbound messages that are pending to be sent over the communication network to multiple remote nodes via the ports. At least some of the outbound messages request the remote nodes to send respective amounts of data back to the network adapter. Based on the amounts of data requested by the outbound messages, the circuitry forecasts a bandwidth of inbound response traffic, which is expected to traverse a selected network element in response to the outbound messages toward the network adapter, determines a schedule for transmitting the outbound messages to the remote nodes so that the forecasted bandwidth meets a bandwidth supported by the selected network element, and transmits the outbound messages to the remote nodes in accordance with the determined schedule.
Abstract:
A method for communication includes posting in a queue a sequence of work items pointing to buffer consisting of multiple strides of a common, fixed size in a memory. A NIC receives data packets from a network containing data to be pushed to the memory. The NIC reads from the queue a first work item pointing to a first buffer and writes data from a first packet to a first number of the strides in the first buffer without consuming all of the strides in the first buffer. The NIC then writes at least a part of the data from a second packet to the remaining strides in the first buffer. When all the strides in the first buffer have been consumed, the NIC reads from the queue a second work item pointing to a second buffer, and writes further data to the strides in the second buffer.