摘要:
Fabrication of monolithic lattice-mismatched semiconductor heterostructures with limited area regions having upper portions substantially exhausted of threading dislocations, as well as fabrication of semiconductor devices based on such lattice-mismatched heterostructures.
摘要:
Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
摘要:
Fabrication of monolithic lattice-mismatched semiconductor heterostructures with limited area regions having upper portions substantially exhausted of threading dislocations, as well as fabrication of semiconductor devices based on such lattice-mismatched heterostructures.
摘要:
A semiconductor structure includes a strain-inducing substrate layer having a germanium concentration of at least 10 atomic %. The semiconductor structure also includes a compressively strained layer on the strain-inducing substrate layer. The compressively strained layer has a germanium concentration at least approximately 30 percentage points greater than the germanium concentration of the strain-inducing substrate layer, and has a thickness less than its critical thickness. The semiconductor structure also includes a tensilely strained layer on the compressively strained layer. The tensilely strained layer may be formed from silicon having a thickness less than its critical thickness. A method for fabricating a semiconductor structure includes providing a substrate, providing a compressively strained semiconductor on the substrate, depositing a tensilely strained semiconductor adjacent the substrate until a thickness of a first region of the tensilely strained semiconductor is greater than a thickness of a second region of the tensilely strained semiconductor, forming a n-channel device on the first region, and forming a p-channel device on the second region.
摘要:
Semiconductor structures and devices including strained material layers having impurity-free zones, and methods for fabricating same. Certain regions of the strained material layers are kept free of impurities that can interdiffuse from adjacent portions of the semiconductor. When impurities are present in certain regions of the strained material layers, there is degradation in device performance. By employing semiconductor structures and devices (e.g., field effect transistors or “FETs”) that have the features described, or are fabricated in accordance with the steps described, device operation is enhanced.