-
11.
公开(公告)号:US12082930B2
公开(公告)日:2024-09-10
申请号:US17939067
申请日:2022-09-07
Applicant: Medtronic MiniMed, Inc.
Inventor: Peter Ajemba , Keith Nogueira , Jeffrey Nishida , Andy Y. Tsai
IPC: A61B5/1495 , A61B5/00 , A61B5/0205 , A61B5/021 , A61B5/024 , A61B5/11 , A61B5/145 , A61B5/1455 , A61B5/1468 , A61B5/1486 , G01N27/02 , G06N5/022 , G16H20/17 , G16H40/40 , G16H50/30 , G16H50/70
CPC classification number: A61B5/1495 , A61B5/14532 , A61B5/1468 , A61B5/14865 , A61B5/6849 , A61B5/686 , G01N27/026 , G06N5/022 , G16H20/17 , G16H40/40 , G16H50/30 , G16H50/70 , A61B5/0075 , A61B5/02055 , A61B5/021 , A61B5/024 , A61B5/1118 , A61B5/14546 , A61B5/1455 , A61B5/7203 , A61B5/7221 , A61B5/7267 , A61B5/742 , A61B2505/07 , A61B2560/0223 , A61B2560/0252 , A61B2560/0257 , A61B2562/028 , A61B2562/029 , A61B2562/164
Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
-
公开(公告)号:US11974844B2
公开(公告)日:2024-05-07
申请号:US16397156
申请日:2019-04-29
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Keith Nogueira , Taly G. Engel , Xiaolong Li , Bradley C. Liang , Rajiv Shah , Jaeho Kim , Mike C. Liu , Andy Y. Tsai
IPC: A61B5/1495 , A61B5/00 , A61B5/053 , A61B5/0537 , A61B5/145 , A61B5/1473
CPC classification number: A61B5/1495 , A61B5/053 , A61B5/0537 , A61B5/14532 , A61B5/1473 , A61B5/7221 , A61B5/1451 , A61B5/6848 , A61B5/6868 , A61B5/7225 , A61B5/742 , A61B2560/0204
Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
-
13.
公开(公告)号:US11445951B2
公开(公告)日:2022-09-20
申请号:US16117466
申请日:2018-08-30
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Peter Ajemba , Keith Nogueira , Jeffrey Nishida , Andy Y. Tsai
IPC: A61B5/1495 , A61B5/145 , A61B5/1486 , A61B5/00 , G06N5/02 , G16H50/30 , G01N27/02 , G16H20/17 , G16H50/70 , A61B5/1468 , G16H40/40 , A61B5/1455 , A61B5/0205 , A61B5/021 , A61B5/024 , A61B5/11
Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
-
14.
公开(公告)号:US20220273198A1
公开(公告)日:2022-09-01
申请号:US17737236
申请日:2022-05-05
Applicant: Medtronic MiniMed, Inc.
Inventor: Keith Nogueira , Peter Ajemba , Michael E. Miller , Steven C. Jacks , Jeffrey Nishida , Andy Y. Tsai , Andrea Varsavsky
IPC: A61B5/1495 , A61B5/145 , A61B5/1486 , A61B5/00 , G06N5/02 , G16H50/30 , G01N27/02 , G16H20/17 , G16H50/70 , A61B5/1468 , G16H40/40
Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
-
公开(公告)号:US20190246961A1
公开(公告)日:2019-08-15
申请号:US16397156
申请日:2019-04-29
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Keith Nogueira , Taly G. Engel , Xiaolong Li , Bradley C. Liang , Rajiv Shah , Jaeho Kim , Mike C. Liu , Andy Y. Tsai
IPC: A61B5/1495 , A61B5/1473 , A61B5/145 , A61B5/00 , A61B5/053
CPC classification number: A61B5/1495 , A61B5/053 , A61B5/0537 , A61B5/1451 , A61B5/14532 , A61B5/1473 , A61B5/6848 , A61B5/6868 , A61B5/7221 , A61B5/7225 , A61B5/742 , A61B2560/0204
Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
-
公开(公告)号:US20170184527A1
公开(公告)日:2017-06-29
申请号:US14980185
申请日:2015-12-28
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Keith Nogueira , Taly G. Engel , Xiaolong Li , Bradley C. Liang , Rajiv Shah , Jaeho Kim , Mike C. Liu , Andy Y. Tsai , Andrea Varsavsky , Fei Yu
IPC: G01N27/02 , G01N33/487 , G01N27/416 , G01N33/49
CPC classification number: G01N27/026 , G01N33/48707 , G01N33/49
Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
-
17.
公开(公告)号:US20240285199A1
公开(公告)日:2024-08-29
申请号:US18643565
申请日:2024-04-23
Applicant: Medtronic MiniMed, Inc.
Inventor: Keith Nogueira , Peter Ajemba , Michael E. Miller , Steven C. Jacks , Jeffrey Nishida , Andy Y. Tsai , Andrea Varsavsky
IPC: A61B5/1495 , A61B5/00 , A61B5/0205 , A61B5/021 , A61B5/024 , A61B5/11 , A61B5/145 , A61B5/1455 , A61B5/1468 , A61B5/1486 , G01N27/02 , G06N5/022 , G16H20/17 , G16H40/40 , G16H50/30 , G16H50/70
CPC classification number: A61B5/1495 , A61B5/14532 , A61B5/1468 , A61B5/14865 , A61B5/6849 , A61B5/686 , G01N27/026 , G06N5/022 , G16H20/17 , G16H40/40 , G16H50/30 , G16H50/70 , A61B5/0075 , A61B5/02055 , A61B5/021 , A61B5/024 , A61B5/1118 , A61B5/14546 , A61B5/1455 , A61B5/7203 , A61B5/7221 , A61B5/7267 , A61B5/742 , A61B2505/07 , A61B2560/0223 , A61B2560/0252 , A61B2560/0257 , A61B2562/028 , A61B2562/029 , A61B2562/164
Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
-
公开(公告)号:US12019039B2
公开(公告)日:2024-06-25
申请号:US16158043
申请日:2018-10-11
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Keith Nogueira , Taly G. Engel , Xiaolong Li , Bradley C. Liang , Rajiv Shah , Jaeho Kim , Mike C. Liu , Andy Y. Tsai , Andrea Varsavsky , Fei Yu
IPC: G01N27/02 , G01N33/487 , G01N33/49
CPC classification number: G01N27/026 , G01N33/48707 , G01N33/49
Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
-
公开(公告)号:US20230360799A1
公开(公告)日:2023-11-09
申请号:US18324820
申请日:2023-05-26
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Keith Nogueira , Taly G. Engel , Benyamin Grosman , Xiaolong Li , Bradley C. Liang , Rajiv Shah , Mike C. Liu , Andy Y. Tsai , Andrea Varsavsky , Jeffrey Nishida
IPC: A61B5/145 , A61B5/1495 , G06N3/126 , G06N20/00 , A61B5/1473 , G16H50/20 , G16H40/40
CPC classification number: G16H50/20 , A61B5/14532 , A61B5/14735 , A61B5/1495 , G06N3/126 , G06N20/00 , G16H40/40 , A61B5/6849
Abstract: A method for retrospective calibration of a glucose sensor uses stored values of measured working electrode current (Isig) to calculate a final sensor glucose (SG) value retrospectively. The Isig values may be preprocessed, discrete wavelet decomposition applied. At least one machine learning model, such as, e.g., Genetic Programing (GP) and Regression Decision Tree (DT), may be used to calculate SG values based on the Isig values and the discrete wavelet decomposition. Other inputs may include, e.g., counter electrode voltage (Vcntr) and Electrochemical Impedance Spectroscopy (EIS) data. A plurality of machine learning models may be used to generate respective SG values, which are then fused to generate a fused SG. Fused SG values may be filtered to smooth the data, and blanked if necessary.
-
公开(公告)号:US11471082B2
公开(公告)日:2022-10-18
申请号:US15840673
申请日:2017-12-13
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Andrea Varsavsky , Jeffrey Nishida , Taly G. Engel , Keith Nogueira , Andy Y. Tsai , Peter Ajemba
IPC: A61B5/1495 , A61B5/1473 , A61B5/145 , A61B5/00 , A61M5/142 , A61M5/172 , A61B5/1486
Abstract: A continuous glucose monitoring system may employ complex redundancy to take operational advantage of disparate characteristics of two or more dissimilar, or non-identical, sensors, including, e.g., characteristics relating to hydration, stabilization, and durability of such sensors. Fusion algorithms, Electrochemical Impedance Spectroscopy (EIS), and advanced Application Specific Integrated Circuits (ASICs) may be used to implement use of such redundant glucose sensors, devices, and sensor systems in such a way as to bridge the gaps between fast start-up, sensor longevity, and accuracy of calibration-free algorithms. Systems, devices, and algorithms are described for achieving a long-wear and reliable sensor which also minimizes, or eliminates, the need for BG calibration, thereby providing a calibration-free, or near calibration-free, sensor.
-
-
-
-
-
-
-
-
-