Abstract:
A method for producing a multilayer ceramic electronic component the includes producing a multilayer sheet having a plurality of multilayer ceramic green sheets and internal electrode patterns respectively arranged along a plurality of interfaces between the ceramic green sheets, and having a first main surface and a second main surface that face each other in a lamination direction thereof; placing, and pressure-bonding under heating, a resin composition onto at least one of the first main surface and the second main surface of the multilayer sheet to produce a mother block having an unfixed protection layer thereon; and cutting the mother block along a first-direction cutting-plane line and a second-direction cutting-plane line that are orthogonal to each other to produce a plurality of green chips. The resin composition includes a resin component having a melting point or a glass transition temperature of lower than 100° C. and inorganic compound particles.
Abstract:
A multilayer ceramic capacitor includes a ceramic base body and is structured such that fluorine is present between the ceramic base body and a sintered metal layer or between a sintered metal layer and a conductive resin layer.
Abstract:
A solid electrolytic capacitor that includes a plurality of capacitor elements each including an anode portion, a dielectric layer, and a cathode portion having a solid electrolyte layer and a current collector layer; a leading conductor layer; an insulating resin body; a first external electrode; and a second external electrode. The plurality of capacitor elements are stacked in layers, with mutually adjacent capacitor elements having their respective current collector layers connected to each other. The current collector layer of only the capacitor element adjacent to the leading conductor layer is connected to the leading conductor layer. The first external electrode is connected to the leading conductor layer at the first end surface.
Abstract:
A ceramic body is prepared that includes an inner electrode disposed inside the ceramic body and in which an end portion of the inner electrode is led to a surface of the ceramic body. An electrode layer is formed on the surface of the ceramic body so as to cover the end portion of the inner electrode, the electrode layer containing a resin, a first metal filler that contains a first metal component, and a second metal filler that contains a second metal component having a higher melting point than the first metal component. A heating step of heating the electrode layer is performed to form an electrode including a metal layer that is located on the surface of the ceramic body and that contains the first and second metal components and a metal contained in the inner electrode.
Abstract:
A solid electrolytic capacitor that includes a capacitor element; an exterior resin; an anode lead terminal; and a cathode lead terminal. The anode lead terminal has a Cu base material, and an Au-plating layer formed thereon, and includes an Au region where the Au-plating layer as a surface layer is formed, and a Cu region where the Au-plating layer is not formed. The cathode lead terminal includes a base material, and an Au-plating layer as a surface layer of the cathode lead terminal, which is formed on the base material, and an anode section of the capacitor element is connected to the Cu region of the anode lead terminal.
Abstract:
A solid electrolytic capacitor that includes a capacitor element; an exterior resin; an anode lead terminal; and a cathode lead terminal. The anode lead terminal has a Cu base material, and an Au-plating layer formed thereon, and includes an Au region where the Au-plating layer as a surface layer is formed, and a Cu region where the Au-plating layer is not formed. The cathode lead terminal includes a base material, and an Au-plating layer as a surface layer of the cathode lead terminal, which is formed on the base material, and an anode section of the capacitor element is connected to the Cu region of the anode lead terminal.
Abstract:
A capacitor disposed inside a multilayer substrate that includes a conductive pattern on a surface thereof and an anode portion having a first conductive metal member and a porous portion disposed on a surface of the first conductive metal member, a cathode portion, and a dielectric layer disposed between the anode portion and the cathode portion. Moreover, the anode portion is led out to a surface side of the multilayer substrate by a connection electrode including an alloy layer containing a metal forming the first conductive metal member and a conductive layer disposed on the alloy layer, and in which the connection electrode is connected to the conductive pattern formed on the surface of the multilayer substrate.
Abstract:
An electronic component includes a composite body composed of a composite material of a resin and a magnetic metal powder and a metal film disposed on an outer surface of the composite body. The magnetic metal powder contains Fe. The metal film mainly contains Ni and is in contact with the resin and the magnetic metal powder.
Abstract:
A solid electrolytic capacitor that includes a plurality of capacitor elements each including an anode portion, a dielectric layer, and a cathode portion having a solid electrolyte layer and a current collector layer; a leading conductor layer; an insulating resin body; a first external electrode; and a second external electrode. The plurality of capacitor elements are stacked in layers, with mutually adjacent capacitor elements having their respective current collector layers connected to each other. The current collector layer of only the capacitor element adjacent to the leading conductor layer is connected to the leading conductor layer. The first external electrode is connected to the leading conductor layer at the first end surface.
Abstract:
A solid electrolytic capacitor that includes a capacitor element including an anode portion having a metal layer, a dielectric layer, and a cathode portion having a solid electrolyte layer and a current collector layer; a leading conductor layer; an insulating resin body covering the capacitor element and the leading conductor layer, the insulating resin body having a first end surface and a second end surface opposite to each other; a first external electrode; and a second external electrode. The first external electrode has at least one plating layer on the first end surface, and is connected to the leading conductor layer at the first end surface. The second external electrode has at least one plating layer on the second end surface, and is connected to the metal layer at the second end surface.