Abstract:
An ultra thin package for an electric acoustic sensor chip of a micro electro mechanical system is provided. A substrate has a first substrate surface and a second substrate surface opposite to the first substrate surface. At least one conductor bump is formed on the second substrate surface. An electric acoustic sensor chip having a first chip surface and a second chip surface opposite to the first chip surface is provided. The first chip surface is electrically connected to the conductor bump. The conductor bump is positioned between the second substrate surface and the first chip surface to create a space. The conductor bump is used for transferring a signal from the sensor chip to the substrate. An acoustic opening passing through the substrate is formed.
Abstract:
A microelectromechanical filter is provided. The microelectromechanical filter includes an input electrode, an output electrode, one or several piezoelectric resonators, one or several high quality factor resonators, and one or several coupling beams. The input electrode and the output electrode are disposed on the piezoelectric resonators. The high quality factor resonator is silicon or of piezoelectric materials, and there is no metal electrode on top of the resonator. The coupling beam is connected between the piezoelectric resonator and the high quality factor resonator. The coupling beam transmits an acoustic wave among the resonators, and controls a bandwidth of filter. The microelectromechanical filter with low impedance and high quality factor fits the demand for next-generation communication systems.
Abstract:
A chip package structure including a heat dissipation substrate, a chip and a heterojunction heat conduction buffer layer is provided. The chip is disposed on the heat dissipation substrate. The heterojunction heat conduction buffer layer is disposed between the heat dissipation substrate and the chip. The heterojunction heat conduction buffer layer includes a plurality of pillars perpendicular to the heat dissipation substrate. The aspect ratio of each pillar is between about 3:1 and 50:1.
Abstract:
A swinging apparatus comprising an energy provider and a swinging mechanism disposed thereon. By means of adjusting the size and shape of the swinging mechanism and adjusting a distance between the swinging mechanism and the energy provider so as to control the ratio of the distance between the swinging mechanism and the energy provider to a characteristic value corresponding to the swing mechanism in a range between 4 and 0.25, the swinging frequency of the swinging mechanism may be adjusted automatically to comply with the variation of the motion frequency of the energy provider. The present invention further provides an energy harvester to work with the swinging apparatus and a coil to generate an induced current for power generation during the swing of the swing mechanism. In the present invention, the natural frequency of the swing mechanism may be adjusted according to the rotational velocity of the energy provider.
Abstract:
An ultra thin package for an electric acoustic sensor chip of a micro electro mechanical system is provided. A substrate has a first substrate surface and a second substrate surface opposite to the first substrate surface. At least one conductor bump is formed on the second substrate surface. An electric acoustic sensor chip having a first chip surface and a second chip surface opposite to the first chip surface is provided. The first chip surface is electrically connected to the conductor bump. The conductor bump is positioned between the second substrate surface and the first chip surface to create a space. The conductor bump is used for transferring a signal from the sensor chip to the substrate. An acoustic opening passing through the substrate is formed.
Abstract:
A bi-display mode liquid crystal display comprises a top and a bottom transparent substrate that are arranged in a parallel way, and between the two transparent substrates are a liquid crystal layer, a semi-reflector and a color filter sequentially, in addition, a top and a bottom polarizer are set on the outer surface of the top and the bottom transparent substrate respectively; by setting the semi-reflector upon the color filter, it makes the light not pass through the color filter and increase the reflection rate. Therefore, the present invention not only provides a reflective mode of high brightness gray scale display, but has a transmissive mode of beautiful color, and has the advantage of power saving and easy to use.
Abstract:
A drive module of liquid crystal panel is formed by arranging a plurality of transversal signal scan lines and a plurality of longitudinal data transmission lines on a liquid crystal panel. A signal scan control IC and a data transmission control IC having a memory component and a panel controller built therein are disposed at the upper and lower sides of the liquid crystal panel, respectively. Each of the data transmission lines is connected to the data transmission control IC with the shortest distance. The signal scan lines are connected to contacts at two sides of the signal scan control IC from two sides of the liquid crystal panel. The earlier a signal scan line is for scan, the closer to the inner side it is connected to a contact on the signal scan control IC.
Abstract:
A light collection system including a light concentrating device and a reflective curving-surface device is provided. The light concentrating device receives at least a portion of an incident light and forwardly emits the portion of the incident light after concentrating and passing it through a first focal region, so as to obtain a first-stage output light. The reflective curving-surface device has an entrance aperture for receiving the first-stage output light. The reflective curving-surface device includes a reflective inner curving surface, and at least a portion of the reflective inner curving surface has a second focal region. The first focal region and the second focal region are confocal or approximately confocal within a range. As a result, at least a portion of the first-stage output light is confocally converted into a forwardly emitted second-stage output light.
Abstract:
A two-dimensional scanning and reflecting device includes a vibration component and a scanning component. The vibration component has a free end. The scanning component includes a frame body, a mass block, and a mirror. The frame body is connected to the free end of the vibration component. A natural frequency of the mirror corresponds to a second frequency. The mass block is disposed on the frame body in an eccentric manner, and the mass block and the natural frequency of the mirror correspond to a first frequency. When the vibration component receives a multi-frequency signal having the first frequency and the second frequency, the mirror vibrates in an axial direction with the first frequency, and vibrates in another axial direction with the second frequency.
Abstract:
A truss structure is provided. The truss structure comprises a substrate; and plural sub-truss groups disposed on the substrate, wherein each sub-truss group comprises plural VIAs; and plural metal layers interlaced with the plural VIAs, wherein the plural sub-truss groups are piled up on each other to form a 3-D corrugate structure.