Abstract:
System, methods and apparatus are described that facilitate transmission of data over a multi-wire data communications link, particularly between two devices within an electronic apparatus. A sequence of data bits is converted into M transition numbers, which are then converted into a sequence of symbols. The sequence of symbols is transmitted received over N wires. A clock signal may be effectively embedded in the transmission of the sequence of symbols. Each of the sequence of symbols may be selected based on a corresponding one of the M transition numbers and a value of a preceding one of the sequence of symbols.
Abstract:
A termination network for a receiver device is provided to support both D-PHY signaling and N-factorial signaling. The first end of each of a plurality dynamically configurable switches is coupled to a common node. A first end of each of a plurality of resistances is coupled to a second end of a corresponding switch. A plurality of terminals receive differential signals and each terminal is coupled to a corresponding second end of a resistance. Each of a plurality differential receivers is coupled between two terminals of the termination network, wherein a first differential receiver and a second differential receiver are coupled to the same two terminals, the first differential receiver is used when the differential signals use a first type of differential signal encoding, the second differential receiver is used when the differential signals use a second type of differential signal encoding.
Abstract:
System, methods and apparatus are described that include a serial bus, including a serial bus used for Inter-Integrated Circuit (I2C) and/or camera control interface (CCI) operations. The bus has a first line and a second line, a first set of devices coupled to the bus and a second set of devices coupled to the bus. A method of operating the bus includes configuring the first set of devices to use the first line for data transmissions and use the second line for a first clock signal in a first mode of operation, and configuring the second set of devices to use both the first line and the second line for data transmissions while embedding a second clock signal within symbol transitions of the data transmissions in a second mode of operation.
Abstract:
System, methods and apparatus are described that offer improved performance of a serial bus used for Inter-Integrated Circuit (I2C) and/or camera control interface (CCI) operations. Other described devices may be configured as a bus master or as a slave. In one method, a transmitter may generate a transition number from a set of bits, convert the transition number into a sequence of symbols, and transmit the sequence of symbols in the signaling state of a two-wire serial bus. Timing information may be encoded in the transitions between symbols of consecutive pairs of symbols in the sequence of symbols. For example, each transition may cause a change in the signaling state of at least one wire of the two-wire serial bus. A receiver may derive a receive clock from the transitions in order to receive and decode the sequence of symbols.
Abstract:
System, methods and apparatus are described that facilitate transmission of data over a multi-wire data communications link, particularly between two devices within an electronic apparatus. A sequence of data bits is converted into M transition numbers, which are then converted into a sequence of symbols. The sequence of symbols is transmitted received over N wires. A clock signal may be effectively embedded in the transmission of the sequence of symbols. Each of the sequence of symbols may be selected based on a corresponding one of the M transition numbers and a value of a preceding one of the sequence of symbols.
Abstract:
A method, an apparatus, and a computer program product are described. The apparatus generates a receive clock signal for receiving data from a multi-wire open-drain link by determining a transition in a signal received from the multi-wire open-drain link, generating a clock pulse responsive to the transition, delaying the clock pulse by a preconfigured first interval if the transition is in a first direction, and delaying the clock by a preconfigured second interval if the transition is in a second direction. The preconfigured first and/or second intervals are configured based on a rise time and/or a fall time associated with the communication interface and may be calibrated by measuring respective delays associated with clock pulses generated for first and second calibration transitions.
Abstract:
A termination network for a receiver device is provided to support both D-PHY signaling and N-factorial signaling. The first end of each of a plurality dynamically configurable switches is coupled to a common node. A first end of each of a plurality of resistances is coupled to a second end of a corresponding switch. A plurality of terminals receive differential signals and each terminal is coupled to a corresponding second end of a resistance. Each of a plurality differential receivers is coupled between two terminals of the termination network, wherein a first differential receiver and a second differential receiver are coupled to the same two terminals, the first differential receiver is used when the differential signals use a first type of differential signal encoding, the second differential receiver is used when the differential signals use a second type of differential signal encoding.
Abstract:
A method for performing multi-wire signaling encoding is provided in which a clock signal is encoded within symbol transitions. A sequence of data bits is converted into a plurality of m transition numbers. Each transition number is converted into a sequential symbol number from a set of sequential symbol numbers. The sequential symbol number is converted into a raw symbol that can be transmitted over a plurality of differential drivers. The raw symbol is transmitted spread over a plurality of n wires, wherein the clock signal is effectively embedded in the transmission of raw symbols since the conversion from transition number into a sequential symbol number guarantees that no two consecutive raw symbols are the same. The raw symbol is guaranteed to have a non-zero differential voltage across all pairs of the plurality of n wires.
Abstract:
An exemplary method for intelligent compression uses a foveated-compression approach. First, the location of a fixation point within an image frame is determined. Next, the image frame is sectored into two or more sectors such that one of the two or more sectors is designated as a fixation sector and the remaining sectors are designated as foveation sectors. A sector may be defined by one or more tiles within the image frame. The fixation sector includes the particular tile that contains the fixation point and is compressed according to a lossless compression algorithm. The foveation sectors are compressed according to lossy compression algorithms. As the locations of foveation sectors increase in angular distance from the location of the fixation sector, a compression factor may be increased.
Abstract:
Methods and apparatus improve static region detection in an imaging pipeline. An imaging pipeline may perform detection of static regions of an image at multiple stages of the pipeline. For example, as static regions may be eliminated from further processing by the imaging pipeline, static region detection performed at an early stage of the pipeline may provide for maximized power savings. As images early in the pipeline may contain artifacts inhibiting detection of some static regions, additional static region detection may be performed after further image processing. For example, static region detection may be performed for a second time after some filtering is applied to images in the pipeline. Regions previously characterized as dynamic may be characterized as static later in the pipeline due to a reduction of noise for example provided by the filters, and differences between the static region detection at different positions within the imaging pipeline.