Abstract:
Methods, apparatus, and systems for data communication over a multi-wire, multi-phase interface are disclosed. A method includes equalizing three-phase signals received from two wires of the interface to provide equalized signals, providing first and second difference signals by comparing voltage differences between the equalized signals with first and second reference voltage levels respectively, capturing delayed and undelayed versions of the second difference signal using flipflops triggered by different edges in the first difference signal, and adjusting an equalizing circuit until outputs of the first flipflops indicate that a ratio of low-frequency attenuation to high-frequency amplification has been achieved that enables information to be accurately decoded from the three-phase signals. The three-phase signal received from a first of the two wires is in a different phase than the three-phase signal received from a second of the two wires.
Abstract:
System, methods and apparatus are described that facilitate transmission of data, particularly between two devices within an electronic apparatus. Information is transmitted in N-phase polarity encoded symbols. Drivers may be adapted or configured to align state transitions on two or more connectors in order to minimize a transition period between consecutive symbols. The drivers may include circuits that advance or delay certain transitions. The drivers may include pre-emphasis circuits that operate to drive the state of a connector for a portion of the transition period, even when the connector is transitioned to an undriven state.
Abstract:
Unified systems and methods for interchip and intrachip node communication are disclosed. In one aspect, a single unified low-speed bus is provided that connects each of the chips within a computing device. The chips couple to the bus through a physical layer interface and associated gateway. The gateway includes memory that stores a status table summarizing statuses for every node in the interface fabric. As nodes experience state changes, the nodes provide updates to associated local gateways. The local gateways then message, using a scout message, remote gateways with information relating to the state changes. When a first node is preparing a signal to a second node, the first node checks the status table at the associated local gateway to determine a current status for the second node. Based on the status of the second node, the first node may send the message or take other appropriate action.
Abstract:
System, methods and apparatus are described that facilitate transmission of data between two devices. A data transfer method includes receiving first data from a first interface, the first data being received in signaling transmitted by a first device according to a first protocol, determining a mode of operation for a communication link to be used for transmitting the first data to a second device, transmitting the first data to the second device over an optical path of the communication link in a first mode of operation, transmitting the first data in accordance with the first protocol to the second device over an electrical path of the communication link in a second mode of operation, and in a third mode of operation, translating the first data to obtain second data, and transmitting the second data in accordance with a second protocol to the second device over the electrical path.
Abstract:
A method, an apparatus, and a computer program product for data communication over a multi-wire, multi-phase interface are provided. The method may include providing a sequence of symbols to be transmitted on a 3-wire interface, each symbol in the sequence of symbols defining one of three voltage states for each wire of the 3-wire interface, driving all wires of the 3-wire interface to a common voltage state during a transition from a first transmitted symbol to a second transmitted symbol, driving each wire of the 3-wire interface in accordance with the second transmitted symbol after a predetermined delay. Each wire may be in a different voltage state from the other wires of the 3-wire interface during transmission of the each symbol. The common voltage state may lie between two of the three voltage states.
Abstract:
Systems, methods and apparatus are described that facilitate transmission of data, particularly between two devices within an electronic apparatus. Two Integrated Circuit (IC) devices may be collocated in an electronic apparatus and communicatively coupled through a 3-wire, 3-phase interface. A data transfer method operational on a first of the two or more devices includes determining presence of a misalignment of the 3-wire communication link involving two or more wires, and inverting a first bit of a 3-bit symbol encoded in a transition of signaling state of the 3-wire communication link when the misalignment of the 3-wire communication link is determined to affect phase relationships between two or more signals carried on the three wires, such that inverting the first bit corrects the phase relationships between the two or more signals. A version of the 3-phase signal may be communicated in a different phase state through each of three wires.
Abstract:
A high speed serial interface is provided. In one aspect, the high speed serial interface uses three phase modulation for jointly encoding data and clock information. Accordingly, the need for de-skewing circuitry at the receiving end of the interface is eliminated, resulting in reduced link start-up time and improved link efficiency and power consumption. In one embodiment, the high speed serial interface uses fewer signal conductors than conventional systems having separate conductors for data and clock information. In another embodiment, the serial interface allows for data to be transmitted at any speed without the receiving end having prior knowledge of the transmission data rate. In another aspect, the high speed serial interface uses polarity encoded three phase modulation for jointly encoding data and clock information. This further increases the link capacity of the serial interface by allowing for more than one bit to be transmitted in any single baud interval.
Abstract:
System, methods and apparatus are described that facilitate transmission of data over a multi-wire data communications link, particularly between two devices within an electronic apparatus. A sequence of data bits is converted into M transition numbers, which are then converted into a sequence of symbols. The sequence of symbols is transmitted received over N wires. A clock signal may be effectively embedded in the transmission of the sequence of symbols. Each of the sequence of symbols may be selected based on a corresponding one of the M transition numbers and a value of a preceding one of the sequence of symbols.
Abstract:
A line multiplexed UART interface is provided that multiplexes a UART transmit and CTS functions on a transmit pin and that multiplexes a UART receive and RTS functions on a receive pin. In this fashion, the conventional need for an additional RTS pin and an additional CTS pin is obviated such that the line multiplexed UART interface uses just the transmit pin and the receive pin.
Abstract:
A method for performing multi-wire signaling encoding is provided in which a clock signal is encoded within symbol transitions. A sequence of data bits is converted into a plurality of m transition numbers. Each transition number is converted into a sequential number from a set of sequential numbers. The sequential number is converted into a raw symbol that can be transmitted over a plurality of differential drivers. The raw symbol is transmitted spread over a plurality of n wires, wherein the clock signal is effectively embedded in the transmission of raw symbols since the conversion from transition number into a sequential number guarantees that no two consecutive raw symbols are the same. The raw symbol is guaranteed to have a non-zero differential voltage across all pairs of the plurality of n wires.