Abstract:
Systems and methods for sensing temperature on a chip are described herein. In one embodiment, a temperature sensor comprises a first transistor having a gate, a second transistor having a gate coupled to the gate of the first transistor, and a bias circuit configured to bias the gates of the first and second transistors such that the first and second transistors operate in a sub-threshold region, and to generate a current proportional to a difference between a gate-to-source voltage of the first transistor and a gate-to-source voltage of the second transistor. The temperature sensor also comprises an analog-to-digital converter (ADC) configured to convert the current into a digital temperature reading
Abstract:
Sense amplifiers that can provide improved resolving times can be used, for example, in clock and data recovery circuits. The sense amplifiers sense the value of a differential input signal using a latch circuit and then, after an initial sensing time, force the latch circuit to resolve a digital value that corresponds to the value of the input signal. An implementation of the sense amplifies uses a first latch with cross-coupled inverters that produce set and reset signals. A transistor pair couples the differential input signal to the cross-coupled inverters via a switch to ground. A discharge path circuit arranged to accelerate the resolving of the latch circuit is also coupled to the cross-coupled inverters. The discharge path can be enabled after an initial sensing time.
Abstract:
Methods and systems for independently tracking NMOS device process variation and PMOS device process variation are described herein. In one embodiment, a method for tracking process variation includes measuring a frequency of an NMOS-based ring oscillator on a chip, and determining a threshold voltage or switching speed for NMOS transistors on the chip based on the measured frequency of the NMOS-based ring oscillator. The method also includes measuring a frequency of a PMOS-based ring oscillator on the chip, and determining a threshold voltage or switching speed for PMOS transistors on the chip based on the measured frequency of the PMOS-based ring oscillator.
Abstract:
An integrated circuit compensates for circuit aging by measuring the aging with an aging sensor and controlling a supply voltage based on the measured aging. The operating environment for the aging sensor can be set to reduce impacts of non-aging effects on the measured aging. For example, the operating environment can use a temperature inversion voltage. An initial aging measurement value which is the difference between an initial aged measurement and an initial unaged measurement can be stored on the integrated circuit. A core power reduction controller can use the measured aging and the stored initial aging measurement value to update a performance-sensor target value and then perform adaptive voltage scaling using the using the updated performance-sensor target value.
Abstract:
Systems and methods for recovering clock and data from a data input signal are disclosed that sample a plurality of clock phase signals with the data input signal to determine a timing relationship between the data input signal and the clock phase signals and use the determined to timing relationship to select one of the clock phase signals to use for sampling the data input signal to produce recovered data. The CDR can include a glitch suppression module to suppress glitches on the clock output signal that could be caused by large instantaneous jitter on the data input signal. A clock and data recovery circuit (CDR) using these methods can quickly lock to a new data input signal and can reliably receive data when there is large instantaneous timing jitter on the data input signal.
Abstract:
A delay architecture for reducing downtime during frequency switching is described herein. In one embodiment, an adjustable delay circuit comprises a phase-locked loop (PLL) or a delay-locked loop (DLL) configured to generate a bias voltage, and a plurality of delay elements coupled in series, wherein each of the delay elements is biased by the bias voltage. The adjustable delay circuit also comprises a multiplexer coupled to outputs of two or more of the delay elements, wherein each of the outputs corresponds to a different delay of an input signal, and wherein the multiplexer is configured to select one of the outputs based on a data frequency of a memory interface.
Abstract:
An apparatus for sensing distributed load currents provided by power gating circuit. The apparatus includes a power gating circuit including a set of bulk transistors coupled in series with a set of circuits between first and second voltage rails. The apparatus includes a current sensor with a first ring oscillator, a first frequency-to-code (FTC) converter, a second ring oscillator, a second FTC converter, and a subtractor. The first ring oscillator includes a first set of one or more inverters configured to receive a first voltage at a node between the power gating circuit and the first circuit, and a second set of one or more inverters configured to receive a second voltage at a second node between the power gating circuit and the second circuit. The first ring oscillator is configured to generate a signal including a frequency related to the voltage drops across the first and second sets of transistors.
Abstract:
In one embodiment, a method for measuring current comprises generating a sensor current based on a current being measured. The method also comprises converting a combined current into a first frequency, wherein the combined current is a sum of the sensor current and a common-mode current, and converting the first frequency into a first count value. The method further comprises converting the common-mode current into a second frequency, converting the second frequency into a second count value, and subtracting the second count value from the first count value to obtain a current reading.
Abstract:
In one embodiment, a method for measuring current is described herein. The method comprises shorting first and second inputs of an amplifying circuit to generate a first output signal, and converting the first output signal into an offset cancelation value. The method also comprises passing a current through a power switch, wherein the current generates a voltage drop across the power switch, applying the voltage drop across the first and second inputs of the amplifying circuit to generate a second output signal, and converting the second output signal into a current value. The method further comprises subtracting the offset cancelation value from the current value to generate an offset-compensated current value.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be used for detecting an incorrect clock frequency. In one example, the apparatus includes a first circuit configured to compare a clock signal period to a delay period. Additionally, in one example, the apparatus includes a second circuit configured to output a first signal. The period of the first signal may be double the clock signal period when the clock signal period is greater than the delay period. The apparatus may, in one example, also include a third circuit configured to output a second signal. The period of the second signal may be greater than double the clock signal period when the clock signal period is greater than the delay period.