Abstract:
Systems and methods for adjusting a phase step size of a clock data recover (CDR) circuit are described according to aspects of the present disclosure. In certain aspects, a method for adjusting a phase step size of a CDR circuit includes sensing a frequency offset of the CDR circuit, and adjusting the phase step size of the CDR circuit based on the sensed frequency offset. The frequency offset may be sensed by sensing a signal level on an integration path of a loop filter of the CDR circuit. The phase step size of the CDR circuit may be adjusted by switching the CDR circuit between a first phase step size and a second phase step size using a modulator (e.g., a sigma-delta modulator).
Abstract:
Sense amplifiers that can provide improved resolving times can be used, for example, in clock and data recovery circuits. The sense amplifiers sense the value of a differential input signal using a latch circuit and then, after an initial sensing time, force the latch circuit to resolve a digital value that corresponds to the value of the input signal. An implementation of the sense amplifies uses a first latch with cross-coupled inverters that produce set and reset signals. A transistor pair couples the differential input signal to the cross-coupled inverters via a switch to ground. A discharge path circuit arranged to accelerate the resolving of the latch circuit is also coupled to the cross-coupled inverters. The discharge path can be enabled after an initial sensing time.
Abstract:
A single-ended comparator is disclosed herein. The comparator may be implemented with low-voltage semiconductor devices that are capable of operating with high-voltage signals at an input. The single-ended comparator may be integrated in a larger circuit to receive and detect information provided on the input at voltage levels higher than the levels supported by the rest of the circuit, and transfer the information in the received signal for use by the rest of the circuit.
Abstract:
A clock generation apparatus has a delay circuit, a phase selection circuit, and a phase measurement circuit. The delay circuit outputs a first signal that is a delayed version of an input signal. The phase selection circuit receives the input signal and one or more phase-shifted versions of the input signal and outputs a second signal that is a phase-shifted version of the input signal. The phase measurement circuit compares the phases of the first signal and the second signal and provides a first output that controls phase of the second signal relative to the input signal. The phase measurement circuit also provides a second output that controls a delay applied by the delay circuit to the input signal to generate the first signal.
Abstract:
A clock recovery circuit includes a frequency tracking loop including a first charge pump, and a phase tracking loop including a second charge pump. A voltage-controlled oscillator responds to the frequency tracking loop in a first operating mode and to the phase tracking loop in a second operating mode. A lock detector outputs an activation signal that indicates whether the clock recovery circuit has acquired frequency lock. A loop filter coupled to an input of the voltage-controlled oscillator includes a switchable resistor and a programmable delay element responsive to the activation signal. The first charge pump is disabled when the activation signal indicates frequency lock has been acquired, and disabled when the activation signal indicates frequency lock has not been acquired. The switchable resistor is bypassed when an output of the programmable delay element is in the first signaling state.
Abstract:
Systems and methods for recovering clock and data from a data input signal are disclosed that sample a plurality of clock phase signals with the data input signal to determine a timing relationship between the data input signal and the clock phase signals and use the determined to timing relationship to select one of the clock phase signals to use for sampling the data input signal to produce recovered data. The CDR can include a glitch suppression module to suppress glitches on the clock output signal that could be caused by large instantaneous jitter on the data input signal. A clock and data recovery circuit (CDR) using these methods can quickly lock to a new data input signal and can reliably receive data when there is large instantaneous timing jitter on the data input signal.
Abstract:
A charge pump is disclosed herein that includes an output node configured to be coupled to a charge storage device configured to store a charge to produce a control voltage based on the charge stored in the charge storage device; a charging circuit configured to provide charge to the charge storage device; a discharging circuit configured to remove charge from the charge storage device; and an amplifier. The amplifier includes an inverting input configured to receive the control voltage from the output node as a first input signal; and, a non-inverting input configured to receive a second input signal including a bias voltage, wherein the amplifier is configured to attempt to match respective levels of the bias voltage and the control voltage when the charge in the charge storage device is changing.
Abstract:
A receiver has a first equalizer circuit that includes a first stage having a source degeneration circuit and a trans-impedance amplifier (TIA). The source degeneration circuit includes a resistor coupled in parallel with a capacitor. The TIA includes an embedded variable gain amplifier with a gain controlled by feedback resistors. Each feedback resistor is coupled between input and output of the TIA. In some implementations, the receiving circuit has a second equalizer circuit coupled in series with the first equalizer circuit. The second equalizer circuit includes a first stage having a source degeneration circuit and a TIA. The source degeneration circuit in the second equalizer circuit has a source degeneration resistor coupled in parallel with a source degeneration capacitor and the TIA includes an embedded variable gain amplifier whose gain is controlled by feedback resistors coupled between input and output of the TIA in the second equalizer circuit.
Abstract:
Systems and methods for recovering clock and data from a data input signal are disclosed that sample a plurality of clock phase signals with the data input signal to determine a timing relationship between the data input signal and the clock phase signals and use the determined to timing relationship to select one of the clock phase signals to use for sampling the data input signal to produce recovered data. The CDR can include a glitch suppression module to suppress glitches on the clock output signal that could be caused by large instantaneous jitter on the data input signal. A clock and data recovery circuit (CDR) using these methods can quickly lock to a new data input signal and can reliably receive data when there is large instantaneous timing jitter on the data input signal.