Abstract:
An amplifier is disclosed that may include a filter, such as a notch-filter, to filter an output signal provided by the amplifier. The included filter may suppress and/or reduce a gain of the amplifier for a particular range of frequencies. In one embodiment, a frequency response of the filter may be determined by one or more reactive components included within the amplifier. In at least one embodiment, the amplifier may include two or more mutual inductors to reduce the gain of the amplifier when operated at or near a predetermined frequency. In another embodiment, the amplifier may include one or more variable capacitors that may enable the frequency response of the filter to be changed and/or modified.
Abstract:
An apparatus includes a first capacitor, an inductor coupled to the first capacitor, and a second capacitor coupled to the inductor. The second capacitor is coupled to a first output of a differential amplifier.
Abstract:
A device includes a first hybrid, where a first input of the first hybrid is coupled to an output of a first amplifier configured to receive a first input signal. A first input of a second hybrid is coupled to an output of a second amplifier configured to receive a second input signal. The device includes a first phase shifter configured to receive the first input signal and a second phase shifter configured to receive the second input signal. An output of the first phase shifter is coupled to an input of a third amplifier, and an output of the third amplifier is coupled to a second input of the second hybrid. An output of the second phase shifter is coupled to an input of a fourth amplifier, and an output of the fourth amplifier is coupled to a second input of the first hybrid.
Abstract:
A driver amplifier with asymmetrical T-coil matching network is disclosed. In an exemplary embodiment, an apparatus includes a first inductor configured to receive an input signal at an input terminal and to provide an output signal at an output terminal that is matched to a resistive load. The apparatus also includes a second inductor connected to the first inductor and coupled to the first inductor by a coupling coefficient, the second inductor having a first terminal connected to a supply voltage.
Abstract:
A method includes providing a first local oscillator signal having a first duty cycle to a first mixer unit and providing a second local oscillator signal having a second duty cycle to a second mixer unit. At least one of the first duty cycle or the second duty cycle is greater than fifty percent. A frequency of the first local oscillator signal approximately equals a frequency of the second local oscillator signal. The method may also include generating a modulated output signal based on an output signal of the first mixer unit and based on an output signal of the second mixer unit.
Abstract:
A device includes a first hybrid, where a first input of the first hybrid is coupled to an output of a first amplifier configured to receive a first input signal. A first input of a second hybrid is coupled to an output of a second amplifier configured to receive a second input signal. The device includes a first phase shifter configured to receive the first input signal and a second phase shifter configured to receive the second input signal. An output of the first phase shifter is coupled to an input of a third amplifier, and an output of the third amplifier is coupled to a second input of the second hybrid. An output of the second phase shifter is coupled to an input of a fourth amplifier, and an output of the fourth amplifier is coupled to a second input of the first hybrid.
Abstract:
An apparatus includes amplification circuitry configured to amplify a radio frequency (RF) signal. The apparatus also includes differential inductors coupled to an output of the amplification circuitry. The differential inductors include a first inductor serially coupled to a second inductor, and the differential inductors are configured to filter the RF signal and to provide a differential output.
Abstract:
A transceiver configured to transmit data in a plurality of operating modes including a Wi-Fi mode and two or more different Bluetooth power modes, the transceiver comprising: a first power amplifier configured to amplify Bluetooth signals; a second power amplifier configured to amplify Wi-Fi signals; an antenna coupled to the second power amplifier; and a tunable load circuit, coupled between the first amplifier and the second amplifier, configured to provide a different load impedance for each of the plurality of operating modes, the tunable load circuit consisting of: two impedance paths coupled in parallel between output terminals of the first and second amplifiers; and a number of shunt paths coupled between the tunable load circuit and ground potential.
Abstract:
An apparatus includes: a plurality of amplification stages, each stage comprising a cascode transistor; and a bridge circuit coupled between gate terminals of cascode transistors in two adjacent stages of the plurality of amplification stages, the bridge circuit including a plurality of diodes.
Abstract:
A method and apparatus are disclosed for transmitting communication signals through a multi-mode power amplifier. For at least some embodiments, a communication signal may be amplified by an amplifier of the multi-mode power amplifier selected based on a desired transmit output power. The output of the selected amplifier may be coupled through a configurable inductive element to an antenna. The inductive element may be configured as a balun or as an inductive load element based on an operating mode of the multi-mode power amplifier.