Abstract:
A semiconductor device according to one embodiment includes a semiconductor substrate having a main surface and a back surface opposite to the main surface, a drift region of a first conductivity type, a base region of a second conductivity type, a source region of the first conductivity type, and a gate electrode. The semiconductor substrate has a trench in the main surface. The gate electrode is formed in the trench. A distribution of an impurity concentration in the base region has a plurality of peak values along a direction of depth from the main surface toward the back surface, and the number of peak values is four or more.
Abstract:
A semiconductor device and a circuit arrangement are provided so as to reduce an on resistance. A first power MOS transistor and a second power MOS transistor are formed on the same semiconductor substrate. A first power MOS transistor formed in a first element formation region has a columnless structure including no columns. The second power MOS transistor formed in a second element formation region has an SJ structure including columns.
Abstract:
According to this present application, a reliability of a semiconductor device can be improved. The semiconductor device has a first region where a MOSFET is formed, and a second region where a temperature sensor transistor is formed. A body region is formed in a semiconductor substrate of the first region, and a base region is formed in the semiconductor substrate of the second region. A source region is formed in the body region and an emitter region is formed in the base region. A first column region is formed in the semiconductor substrate located below the body region, and a second column region is formed in the semiconductor substrate located below the base region.
Abstract:
A semiconductor device includes: a first semiconductor chip including a first MOSFET of n-type and a first parasitic diode; and a second semiconductor chip including a second MOSFET of n-type and a second parasitic diode. A first source electrode and a first gate wiring are formed in a first front surface of the first semiconductor chip, and a first drain electrode is formed in a first back surface of the first semiconductor chip. A second source electrode and a second gate wiring are formed in a second front surface of the second semiconductor chip, and a second drain electrode is formed in a second back surface of the second semiconductor chip. The first front surface and the second front surface face each other such that the first source electrode and the second source electrode are in contact with each other via a conductive paste.
Abstract:
In a trench gate type power MOSFET having a super-junction structure, both improvement of a breakdown voltage of a device and reduction of on-resistance are achieved. The trench gate and a column region are arranged so as to be substantially orthogonal to each other in a plan view, and a base region (channel forming region) and the column region are arranged separately in a cross-sectional view.
Abstract:
A semiconductor device which simplifies the manufacturing process while decreasing the width of separation between a first MOS transistor area and a second MOS transistor area, and a method for manufacturing the semiconductor device. A first MOS transistor and a second MOS transistor configure a bidirectional switch. The first MOS transistor and second MOS transistor each have a vertical trench structure. A first impurity region abuts on the side wall of a first gate trench of a first MOS transistor element outside the first MOS transistor area and is electrically coupled to a first source region.
Abstract:
The present invention is provided to easily manufacture an IPD as any of a high-side switch and a low-side switch. A level shifting circuit is coupled to an input terminal, a first terminal, and a grounding terminal. Drive power of the level shifting circuit is supplied from the first terminal. An output signal of the level shifting circuit is input to a driver circuit. The driver circuit is coupled to the first terminal and a second terminal. Drive power of the driver circuit is supplied from the first terminal. A transistor has a gate electrode coupled to the driver circuit, a source coupled to the second terminal, and a drain coupled to a third terminal.