Abstract:
Multiple-pattern forming methods are provided. The methods comprise: (a) providing a semiconductor substrate comprising one or more layers to be patterned; (b) forming a photoresist layer over the one or more layers to be patterned, wherein the photoresist layer is formed from a composition comprising: a matrix polymer comprising an acid labile group; a photoacid generator; and a solvent; (c) patternwise exposing the photoresist layer to activating radiation; (d) baking the exposed photoresist layer; (e) contacting the baked photoresist layer with a first developer to form a first resist pattern; (f) treating the first resist pattern with a coating composition comprising an expedient for switching solubility of a sidewall region of the first resist pattern from soluble to insoluble with respect to a second developer that is different from the first developer; and (g) contacting the treated first resist pattern with the second developer to remove portions of the first resist pattern, leaving the solubility-switched sidewall region to form a multiple-pattern. The methods have particular applicability to the semiconductor manufacturing industry for the formation of fine lithographic patterns.
Abstract:
Acid generator compounds are provided that comprise an oxo-1,3-dioxolane moiety and/or an oxo-1,3-dioxane moiety. The acid generators are particularly useful as a photoresist composition component.
Abstract:
New nitrogen-containing compounds are provided that comprise multiple hydroxyl moieties and photoresist compositions that comprise such nitrogen-containing compounds. Preferred nitrogen-containing compounds comprise 1) multiple hydroxyl substituents (i.e. 2 or more) and 2) one or more photoacid-labile groups.
Abstract:
A photoacid generator compound has formula (1) wherein n is zero or 1; and R1-R6 are each independently hydrogen, halogen, or unsubstituted or substituted C1-20 linear or branched alkyl, C1-20 cycloalkyl, C6-20 aryl, C3-20 heteroaryl, or an acid-generating group having the structure *L-Z−M+] wherein L is an unsubstituted or substituted C1-50 divalent group; Z− is a monovalent anionic group; and M+ is an iodonium or sulfonium cation. Geminal R groups can combine to form a ring with the carbon to which they are attached, as long as no more than two such rings are formed. At least one of R1-R6 includes the acid-generating group or two germinal R groups combine to form the acid-generating group. Also described are a photoresist composition incorporating the photoacid generator compound, a coated substrate including a layer of the photoresist composition, and a method of forming an electronic device using a layer of the photoresist composition.
Abstract:
Compositions containing certain organometallic oligomers suitable for use as spin-on, metal hardmasks are provided, where such compositions can be tailored to provide a metal oxide hardmask having a range of etch selectivity. Also provided are methods of depositing metal oxide hardmasks using the present compositions.
Abstract:
A monomer has the Formula I: wherein R1, R2, and R3 are each independently a C1-30 monovalent organic group, and R1, R2, and R3 are each independently unsubstituted or include a halogen, nitrile, ether, ester, ketone, alcohol, or a combination comprising at least one of the foregoing functional groups; R4 includes H, F, C1-4 alkyl, or C1-4 fluoroalkyl; A is a single bond or a divalent linker group, wherein A is unsubstituted or substituted to include a halogen, nitrile, ether, ester, ketone, alcohol, or a combination comprising at least one of the foregoing functional groups; m and n are each independently an integer of 1 to 8; and x is 0 to 2n+2, and y is 0 to 2m+2.
Abstract:
Methods of forming an electronic device, comprise: (a) providing a semiconductor substrate comprising one or more layers to be patterned; (b) forming a photoresist layer over the one or more layers to be patterned, wherein the photoresist layer is formed from a composition that comprises: a matrix polymer comprising a unit having an acid labile group; a photoacid generator; and an organic solvent; (c) coating a photoresist overcoat composition over the photoresist layer, wherein the overcoat composition comprises: a matrix polymer; an additive polymer; a basic quencher; and an organic solvent; wherein the additive polymer has a lower surface energy than a surface energy of the matrix polymer, and wherein the additive polymer is present in the overcoat composition in an amount of from 1 to 20 wt % based on total solids of the overcoat composition; (d) exposing the photoresist layer to activating radiation; (e) heating the substrate in a post-exposure bake process; and (f) developing the exposed film with an organic solvent developer. The methods have particular applicability in the semiconductor manufacturing industry.
Abstract:
Disclosed herein is a metallization method, comprising (a) providing a photoresist layer on a first surface of a substrate, wherein the photoresist layer is formed from a photoresist composition comprising: a polymer comprising acid-labile groups; a photoacid generator; an organic phosphonic acid; and a solvent; (b) pattern-wise exposing the photoresist layer to activating radiation; (c) developing the exposed photoresist layer with a basic developer to form a photoresist pattern; and (d) after forming the photoresist pattern, plating a metal on the first surface of the substrate using the photoresist pattern as a plating mask.
Abstract:
Topcoat compositions are provided that can be used in immersion lithography to form photoresist patterns. The topcoat compositions include a solvent system that comprises 1) a first organic solvent represented by formula (I),
wherein R1 and R2 are alkyl groups of 3-8 carbons and the total number of carbons of R1 and R2 is greater than 6; and 2) a second organic solvent that is a C4 to C10 monovalent alcohol.
Abstract:
Photoresist topcoat compositions comprise: a first polymer that is fluorinated, a second polymer, and an organic-based solvent system comprising an ester solvent and one or more additional organic solvents, wherein the composition is substantially free of photoacid generator compounds. The invention finds particular applicability in the manufacture of semiconductor devices.